

URBAN DRAINAGE SIMULATION MODEL SENSITIVITY ANALISYSIS ON RUNOFF CONTROL ELEMENTS

Željka Ostojić¹, Sanja Marčeta², Dušan Prodanović³, Ljiljana Janković⁴, Srđan Tomić⁵

^{1,2} HIDROPROJEKAT SAOBRAĆAJ, SERBIA, <u>zeljka.ostojic@hps.rs</u>, <u>sanja.marceta @hps.rs</u>

^{3,4} UNIVERSITY of CIVIL ENGINEERING, BELGRAD, SERBIA,

⁵ ACO, BELGRAD, SERBIA,

RUNOFF CONTROL ELEMENTS IN DUAL DRAINAGE CONCEPT

- In link/node simulating models runoff control elements.
- Grate inlets
 Curb opening inlets
 Slotted inlets
 Combination inlets

are

links between *surface runoff* routing model, simulating hydraulics on the catchments surface and a *pipe flow model* simulating the hydraulics of in the pipe system.

POINT AND LINEAR DRAINAGE

LABORATORY TRENCH TESTING

Liquid velocity and height changes at successive cross sections along the trench

TRENCH OUTLET TYPES AND MODELING

END OUTLET

BOTTOM OUTLET

The orifice will initially act as a weir until the top of the orifice is submerged. Therefore, the discharges for the first stages of orifice flow area computed using the weir equation.

CASE STUDY- KRALJEVO WARHOUSE

TRENCH MODELING AND RESULTS

Comparison of these hydraulic profiles induced division of trench drain into 5 equal length sections, with the appropriate catchments subdivision.

SENSITIVITY ANALYSIS - ROUGHNESS AND PONDING

The scenarios of limited sensitive analysis are:

- channel K7 is rectangular with roughness n = 0.015 or
 n = 0.024, with no ponding area in junctions
- channel K7 is rectangular with roughness n = 0.015 or
 n = 0.024, with ponding area of 10m² in junctions

CONCLUSIONS

- The design flow capacity for channel decreases with Manning's n-value increase
- Peak inflows to middle positioned junctions are higher when pond areas has been jointed to trench drain
- > Peak outflows at the end junction are higher when pond areas has been jointed, the difference might been significant for network sizing

- >THANK YOU FOR ATTENTION
- > I BELIVE THIS WORK SHOULD BE CONTINUED

QUESTIONS

