

9th International Conference on Urban Drainage Modelling Belgrade 2012

# Making uncertainty analysis simple

Luca Vezzaro, Peter-Steen Mikkelsen



Ana Deletic & David McCarthy





#### Introduction

• Uncertainty analysis is an important issue in urban drainage

modelling

• Everybody agrees on that....

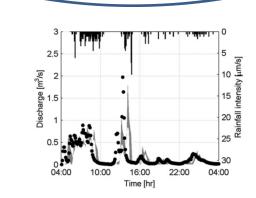
# Knowledge on uncertainty is expanding...

- A lot of research in the past decade -> many articles on that
- Main focus of Int. Working Group on Data&Models in the last 5 years



#### ...but there are still some issues

To create your uncertainty bounds, you can apply a threshold on likelihood of 0.124567



All methods involve a degree of subjectivity

Assumptions difficult to express in tangible terms

Threshold of 0.124567????



Typical practitioner working daily with urban drainage models

#### ...but there are still some issues

My model matches only 60% of the observations...

Well, if you knew how those data were taken... 60% is already a miracle..



Measurement uncertainty is seldom taken into consideration



#### Aim & Objectives

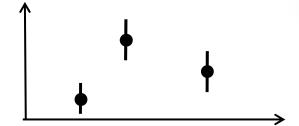
- To make uncertainty analysis simple and understanable
  - Try to reduce the subjectivity of the choices done when running uncertainty analysis
  - Describe the subjective choices in a more tangible manner
  - Introduce a criterion to assess model performance by considering measurement uncertainty
    - Vezzaro-McCarthy Criterion...VMC

#### Example of Rainfall Runoff model – predicting flows

Step 1

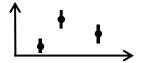
1

Define uncertainty intervals for each observed datapoint



1

Define uncertainty intervals for each observed datapoint



2

Generate *N* parameter sets

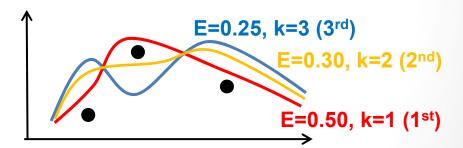


Define uncertainty intervals for each observed datapoint

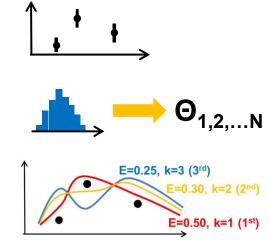
 $\Theta_{1,2,...N}$ 

2 Generate *N* parameter sets

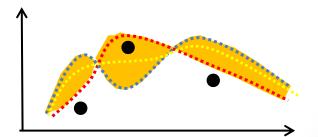
Run model for N
parameter sets and
rank them



- Define uncertainty intervals for each observed datapoint
- Generate N parameter sets
- Run model for N parameter sets and rank them

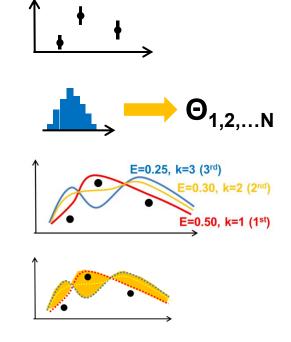


Estimate model prediction bounds (e.g. *K*=3)

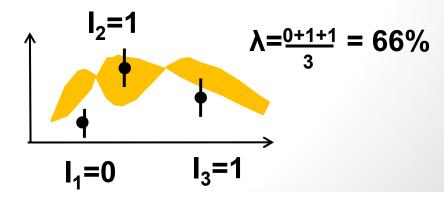


K = number of included ranked simulations in the estimation of the model prediction bounds

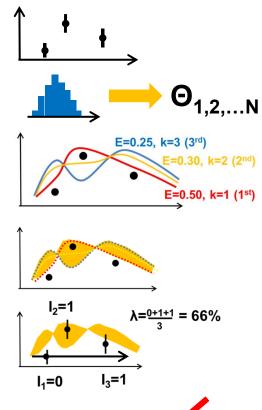
- Define uncertainty intervals for each observed datapoint
- 2 Generate N parameter sets
- Run model for N parameter sets and rank them
- Estimate model prediction bounds (e.g. *K*=3)



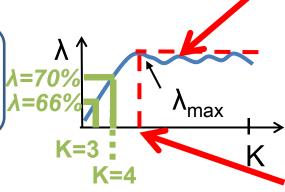
Estimate intersection  $\lambda$  (e.g. for K=3,  $\lambda$ =66%)



- Define uncertainty intervals for each observed datapoint
- 2 Generate N parameter sets
- Run model for N parameter sets and rank them
- Estimate model prediction bounds (e.g. *K*=3)
- Estimate intersection  $\lambda$  (e.g. for K=3,  $\lambda$ =66%)

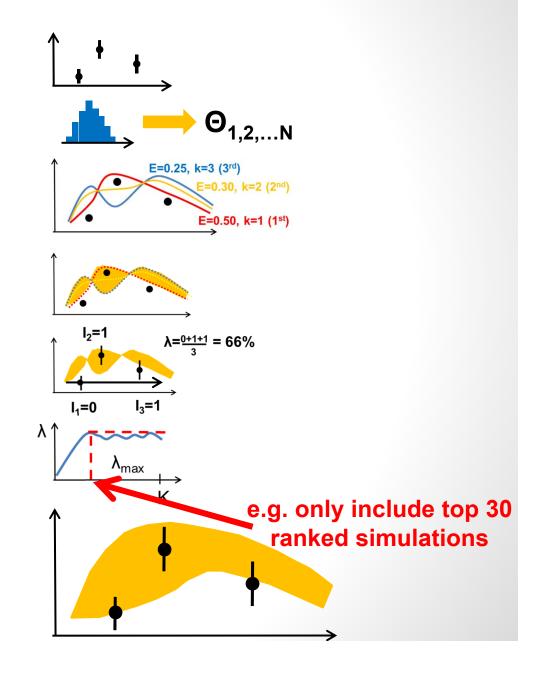






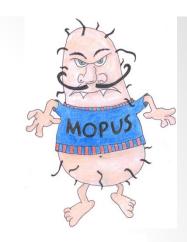
K=30 top 30 are the behavioural parameter sets

- Define uncertainty intervals for each observed datapoint
- 2 Generate N parameter sets
- Run model for N parameter sets and rank them
- Estimate model prediction bounds (e.g. *K*=3)
- Estimate intersection  $\lambda$  (e.g. for K=3,  $\lambda$ =66%)
- Repeat for  $K = 4, 5 \dots N$  (find relationship between  $\lambda$  and K)
- 7 Use Step 6 to make a 'less' subjective cut-off and perform uncertainty assessment

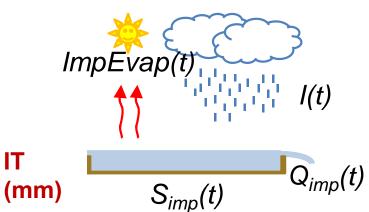


### Case-study

MOPUS Rainfall-Runoff model



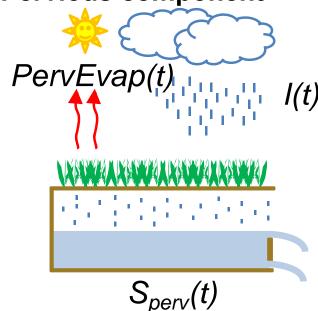
#### Impervious component



#### 6 Parameters

- 1. IMP Imperviousness
- 2. IT Impervious store cap.
- 3. PSC Pervious store capacity
- 4. k Routing coefficient
- 5. m Routing exponent
- 6. TOC

#### **Pervious component**



$$Q(t) = k$$
. RoutingStore<sup>m</sup>  
 $Q_{outlet}(t) = Q(t - TOC)$ 

**PSC** 

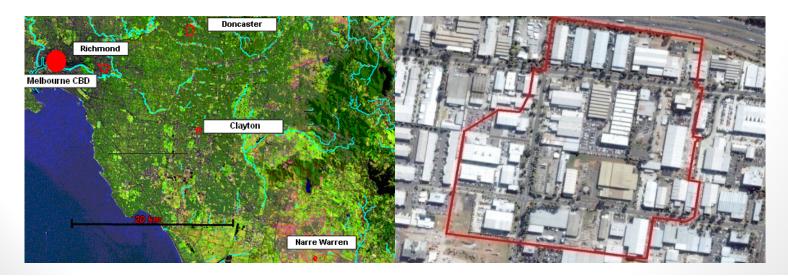
(mm)

# Case-study



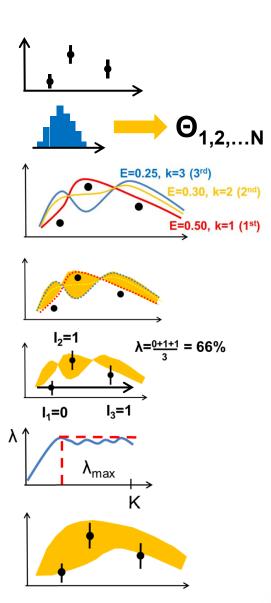
• Clayton catchment; 2 years of continuous flow and rainfall

| Land use                            | Light -industrial |
|-------------------------------------|-------------------|
| Area                                | 28 ha             |
| Total imperviousness                | 80%               |
| Catchment slope                     | 1%                |
| Rainfall gauge distance from outlet | 300 m             |
| Range of event rainfall totals      | 2.0 – 25.4 mm     |
| Number of rainfall events           | 108               |

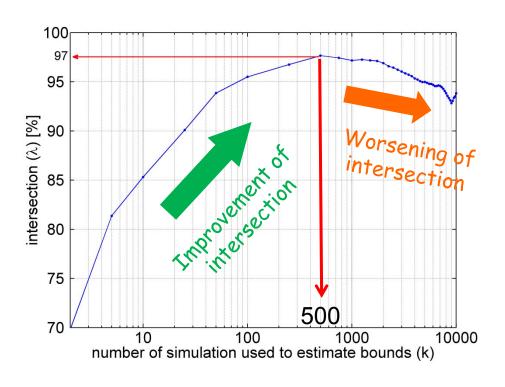


#### Case-study

- Define uncertainty intervals for each observed datapoint
- Generate N parameter sets
- Run model for N parameter sets and rank them
- Estimate model prediction bounds (e.g. *K*=3)
- Estimate intersection  $\lambda$  (e.g. for K=3,  $\lambda$ =66%)
- Repeat for K = 4, 5 ... N (find relationship between  $\lambda$  and K)
- 7 Use Step 6 to make a 'less' subjective cut-off and perform uncertainty assessment

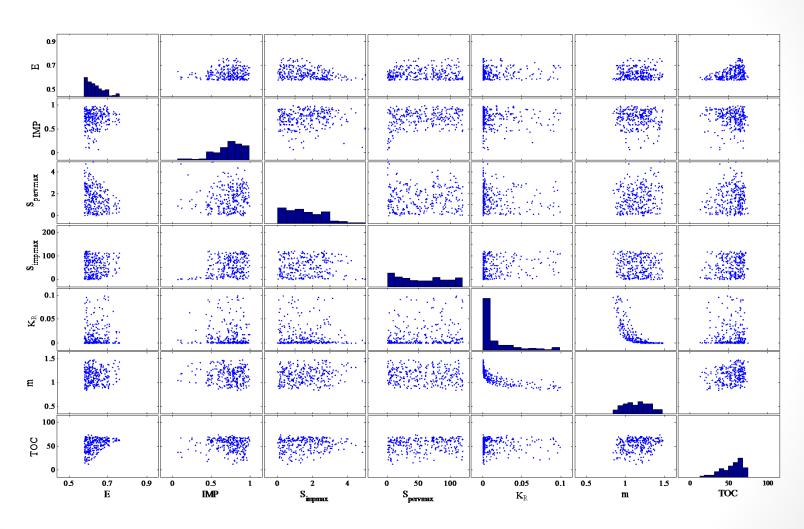


#### Results – cut off threshold



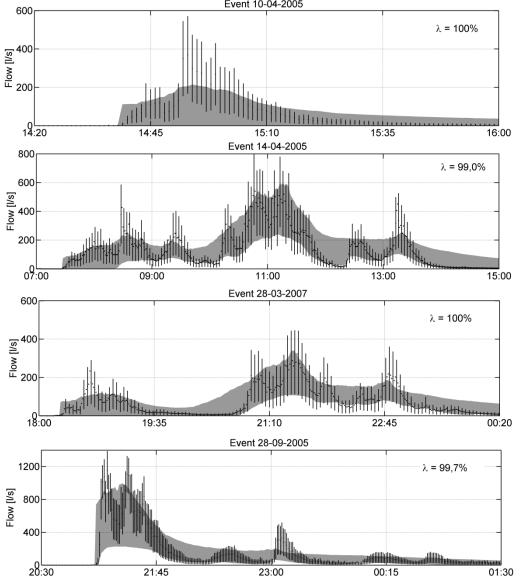
- Not possible to cover all observations ?
- Max. intersection of 97% (top 500 parameter sets)
- Performance not linearly proportional to number of parameter sets

#### Results - Parameter distributions



Flat distribution????

Results – Uncertainty bounds

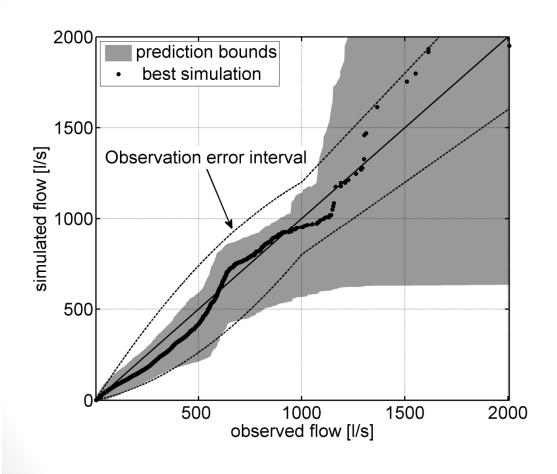


 Good intersection between uncertainty bounds and measurement bounds

Now I get it!!!...97% intersection between model and measurement bounds



### Results – Uncertainty bounds



- Low flows: model uncertainty lower than measurements'
- Above 750 l/s: model uncertainty explodes
- 99% observations below
   750 l/s

#### Conclusions

- A new approach to conduct uncertainty analysis
- Subjectivity is reduced by proposing a tangible criterion
- Measurement uncertainty is taken into account

Wider application of uncertainty analysis in the "real world"

(hopefully)

We love the VMC!

#### Future work

- Validation
- More catchments
- Water quality model
- Input uncertainty (e.g. time displacement in rainfall)
- Exposure of the proposed method to "real practitioners"