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Introduction

* Uncertainty analysis is an important issue in urban drainage
modelling |

* Everybody agrees on that....




Knowledge on uncertainty is
expanding...

* A lot of research in the past decade -> many articles on that

* Main focus of Int. Working Group on Data&Models in the last 5
years

Now we know a
lot about
uncertainty!!

Typical researcher working with
urban drainage models



..but there are still some issues

To create your uncertainty
bounds, you can apply a
threshold on likelihood of
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All methods involve a degree of
subjectivity

Typical practitioner working
daily with urban drainage

Assumptions difficult to express in models

tangible terms



..but there are still some issues

My model matches
only 60% of the
observations...

Well, if you knew how
those data were taken...
60% is already a miracle..

Measurement uncertainty is seldom
taken into consideration



Aim & Objectives

* To make uncertainty analysis simple and understanable

* Try to reduce the subjectivity of the choices done when running
uncertainty analysis

* Describe the subjective choices in a more tangible manner

* Introduce a criterion to assess model performance by considering
measurement uncertainty

Vezzaro-McCarthy Criterion..VMC
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Example of Rainfall Runoff model —
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Define uncertainty intervals for
each observed datapoint

Generate N parameter
sets
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simulations in the estimation of the

Step 4
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Define uncertainty intervals for

each observed datapoint

Generate N parameter sets

" Run model for N parameter sets )

X and rank them )
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Step 5

Define uncertainty intervals for T ¢ '
’ ~

1 each observed datapoint

2 Generate N parameter sets _JIL e1,2,...N
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Step 6

Define uncertainty intervals for
each observed datapoint

Generate N parameter sets

" Run model for N parameter sets
and rank them

Estimate model prediction
bounds (e.g. K=3)

Estimate intersection A
(e.g. for K=3, A=66%)
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Step 7

Define uncertainty intervals for
each observed datapoint

Generate N parameter sets

" Run model for N parameter sets
and rank them

Estimate model prediction
bounds (e.g. K=3)

Estimate intersection A
(e.g. for K=3, A=66%) )
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Case-study

* MOPUS Rainfall-Runoff model

Impervious component Pervious component

lmpEvap@ Pervaap(t). o

” R () ” )

Al : IQimp(t)

(mm) Simp(t)

6 Parameters PSC |
IMP - Imperviousness (mm) ST ()

IT - Impervious store cap. P

PSC - Pervious store capacitv

k - Routing coefficient Q(t) = k . RoutingStore™
m - Routing exponent Q,utiet (1) = Q(t—TOC)
TOC

S i



Case-study

* Clayton catchment; 2 years of continuous flow and rainfall

Land use Light -industrial
Area 28 ha
Total imperviousness 80%
Catchment slope 1%
Rainfall gauge distance from outlet 300 m
Range of event rainfall totals 2.0-25.4mm
Number of rainfall events 108




Case-study
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Results - cut off threshold

0 | ' | * Not possible to cover all
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Results — Parameter distributions
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* Flat distribution????



Flow [fs]

Flow [I/s]

Flow [I/s]

Flow [I/s]

Results — Uncertamty bounds
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 Good intersection
between uncertainty
bounds and measurement
bounds

Now | get it!!!...97%
intersection between

model and measurement
bounds




simulated flow [I/s]

Results — Uncertainty bounds
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Low flows: model
uncertainty lower than
measurements’

Above 750 |/s: model
uncertainty explodes

99% observations below
750 /s



Conclusions

* A new approach to conduct uncertainty analysis
* Subjectivity is reduced by proposing a tangible criterion
* Measurement uncertainty is taken into account

* Wider application of uncertainty analysis in the “real world”
(hopefully)

We love the VMC!




Future work

Validation

More catchments

Water quality model

Input uncertainty (e.g. time displacement in rainfall)

Exposure of the proposed method to “real practitioners”



