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Optimization

Sizing four reservoirs.

Larger reservoirs: Costly
construction.

Smaller reservoirs: Costly

floods.

Optimal size where total

Optimal capacity of four reservoirs.
(After Maharjan, et al, 2009)

cost= Flood + Construction

minimized.



Evolutionary Algorithms

* Based on (Darwinian) — weoeees
evolution. e
“ﬁ?—Ep.‘. lllllllllll
* Good for complex or v

unknown relationships
between input and
output.

* GA, NSGA-II, etc.

Nature’s milestones indicating
evolution of the eye.
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Mutli-Objective Optimization

What is the minimum expected damage for each level of
Investment?

A good negotiation/communication instrument.
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Dangers of Optimization

1

optimal =
redundant
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Networks

Connecting four nodes.

A network with degree of
redundancy

Optimal network. Zero
redundancy.



Problem

* Input parameters uncertain!!!!

* Slight change should not
topple over the edge
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Fine when
‘model’ is

known, and
... simple.



Problems with FOS—
“in complex problems.

Arbitrary

Input .

uncertainty L -

not linked to X,

FOS. i
=
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Uncertainty

Monte-Carlo
experiments.
e A number of

random
samplings of Xi

e Evaluate Y

“Robust-
Optimization”

More eff 1clent Latin Hypercube Sampling (For Efficiency)
way of sampling.



g

he Algorithm

e Evaluate individual

solutions over number of

generations.
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Porto Alegre, Brazil

Areia Basin

35 circular conduits. W

. 232 T A-, D5 }
Planning for future. % s f/g,/;//.-

Catchment
hydrology linked to
population density.

P.D. used as input
variable.
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--------- Robust Avg.
Inpt: SR e N - T S S R MOO Avg
10% uncertainty -
in PD.
: 9 1 C
Robust Optim. .. ¥
Compared with & e, ';
: ay
(vanilla) MOO. 5 I N
8.00 13.00 ls'iﬁvestrzl%é?ﬁ Coszt&oo 33.00 38.00 43.00 48.1310illions Rs
ROBUST MOO
Point | Cost (RS Millions) | Flooding (m?) Point | Cost (RS Millions) | Flooding (m?)
A 10.710 16,453,720 1 10.180 16,549,520
B 25.403 10,815,600 2 24.387 10,376,040
C 45.284 7,322,470 3 45.087 6,735,952
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Discussion —

More formal treatment of output

.
m § 2

§ 3

uncertainty:
e Explicitly linked to input LR
Feasibility (Computational)
A lot of scope for future scenario s TS
studies. | L

Very easy to parallelize (on PC
clusters).
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