
Omar Andino, Assela Pathirana,  
Solomon Seyoum and Damir Brdjanovic 



Optimization of UDN Under 
Uncertainty  
 Optimization 
 Multi-Objective Optimization 
 Adding uncertainty (Robustness) 
 Nuts-and-Bolts 
 Case Study  
 Discussion 



Optimization 
 Sizing four reservoirs.  
 Larger reservoirs: Costly 

construction.  
 Smaller reservoirs: Costly 

floods.  
 Optimal size where total 

  
cost= Flood + Construction 
 
minimized. 

Optimal capacity of four reservoirs. 
(After Maharjan, et al, 2009) 



Evolutionary Algorithms 
 Based on (Darwinian) 

evolution.  
 Good for complex or 

unknown relationships 
between input and 
output.  

 GA, NSGA-II, etc. 

Nature’s milestones indicating 
evolution of the eye.  
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Mutli-Objective Optimization 
 What is the minimum expected damage for each level of 

investment?  
 A good negotiation/communication instrument.  

Intervention cost (1000 GBP) 
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Dangers of Optimization 
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Networks 
 Connecting four nodes.  

A network with degree of 
redundancy 

Optimal network. Zero 
redundancy.  



Problem 
 Input parameters uncertain!!!! 
 Slight change should not 

topple over the edge 



Traditional  
Recourse  

1. Optimize 
2. Apply Factor of 

Safety (FOS) 
• Fine when 

‘model’ is 
known, and 

• … simple.  



Problems with FOS 
in complex problems. 

• Arbitrary 
• Input 

uncertainty 
not linked to 
FOS.  



Explicitly handling  
Uncertainty 

Monte-Carlo 
experiments.  
 A number of 

random 
samplings of Xi 

 Evaluate Y 
 “Robust-

Optimization” 
More efficient 

way of sampling.  
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Latin Hypercube Sampling (For Efficiency) 



The Algorithm 
 Evaluate individual 

solutions over number of 
generations.  

 To be ‘Fit’ has to survive a 
minimum number of 
generations.  



The case study 
Porto Alegre, Brazil 
Areia Basin 
 35 circular conduits.  
 Planning for future. 
 Catchment 

hydrology linked to 
population density.  

 P.D. used as input 
variable.  

After Motta and Tucchi, 1984) 



Results 
 Inpt:  

10% uncertainty 
in PD.  

 Robust Optim. 
Compared with 
(vanilla) MOO.  5
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Investment Cost                  Millions R$ 

Robust LH10

MOO

Robust Avg.

MOO Avg.

ROBUST MOO 
Point Cost (R$ Millions) Flooding (m3) Point Cost (R$ Millions) Flooding (m3) 
A 10.710 16,453,720 1 10.180 16,549,520 
B 25.403 10,815,600 2 24.387 10,376,040 
C 45.284 7,322,470 3 45.087 6,735,952 
 



Discussion 
 More formal treatment of output 

uncertainty: 
 Explicitly linked to input  

 Feasibility (Computational) 
 A lot of scope for future scenario 

studies.  
 Very easy to parallelize (on PC 

clusters). 
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