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What’s new 

• Attempt to get 
extreme rainfalls 
(urban level) right.  

• Number of GCMs (12)  
+ Scenarios (3)  
+ Periods (2) 
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2. Methodology 
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 Poisson cluster process: 
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Calibrated from:  
Mean 
variance  
coefficient of variation  
dry spell duration  
log autocorrelation 
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Models:    12 GCM 
Period:      1974-1999 
 
Scenario:  Past 

Models:    12 GCM 
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Case study: Japan, Kochi 
Period:         1974-1999 
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Factor of Change 
Of Statistics 

Bayes Theorem 
Solved numerically 

Markov Chain Monte Carlo 
MCMC 

Probability of change  
of the the statistic analyzed 
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Combining available precipitation data 

Change Factor 

    NSRP can be recalibrated to take into account the 
effect of climate change by including the factor of 
change that results from the bayesian ensemble 

 

M
et

ho
do

lo
gy

 

5 /  11 



Methodology description 

5. Modified Parameters 
Future: 2046-2065   
Future: 2081-2100 

2. Evaluation of Daily Statistics 
From GCM ensemble  

(Daily Statistics >= 24 hours) 

3. Bayesian Ensemble: Factor of Change 
(Extract mean factor of change) 

4.  Extend factor of change finer scale 
(Subdaily scale: < 24 hours) 

1. Stochastic Rainfall 
Generator Parameters 
 (Past: 1974-2000) 
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6. Run an ensemble of simulations and 
perform extreme values analysis 

 (200 simulations per location, scenario 
and future period) 



4. Results 
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GCM models  
Used 

Scenarios 
Used 

Periods 
Used 

12 3 2 
NCAR CCSM3.0,         MRI CFCM2 3.2A, 
MPI ECHAME 5,         MIUB ECHO G, 
MIROCS 2 MEDRES,  IPSL CM4, 
INMCM3.0,                 GISS MODEL ER, 
GFDL  CM2.1,              CSIRO MK3.5, 
CNRM CM3,                CCCMA CGCM3.1 

SRES A1 
SRES A2 
SRES B1 

2046-2065 
 

2081-2100 

Final ensemble 

Methodology applicable to any location  
in the world where hourly precipitation series are 

available 
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Extreme value representation by the 
NSRP 
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Good fit for return periods <= 10 years 
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Under estimation higher for higher aggregation 
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Factors of change 
Bayesian ensemble results 

Only the mean 
factor of change 

was used 

Kochi 2045-2065.  
Hourly mean 

Computational  
Intensive process 

 
Parallel processing 

was used 
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Conclusions 
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Conclusions 
A methodology based on the use of a 
weather generator in climate impact 
studies was extended to include 
several GCMs.  
Several scenarios and future periods 
were used to evaluate change in 
extreme rainfall events at urban scale. 
Method itself is OK < 10 year events.  
However, GCM results are all over the 
place! 

The uncertainty in the use of different GCMs output 
could be assessed by implementing a Montecarlo 
type simulation  
(Even more computationally intensive!!!!) 
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Conclusions 
Large uncertainties still exist inherent to the 
Bayesian Ensemble approach  
(assumption of independence between GCMs and the 
mismatch between the grid cell size) 

The worked methodology was applied to a 
series of GCMs but could be equally used 
to Regional circulation models (RCMs) 

Freely available and open source tools were 
successfully explored with the additional 

benefit of a simple parallelization scheme.  
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 Downscaling methods 

Working infrastructure 
For scientific computing 

Spatial and temporal 
scales 

GCM models and  
Scenarios used 

Variability of total 
precipitation  in GCM 

Stochastic fit 

Gas emissions  
scenarios 



Downscaling Method 

 Statistical Advantages: 
Comparatively cheap 
and computationally 
efficient 
 
Can provide local scale 
climatic variables from 
GCM-scale output 
 

Disadvantages: 
Dependent on GCM 
boundary forcing; 
affected by biases in 
underlying GCM 

 
(Fowler, 2007) 
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Weather Generators      
(Advanced Weather 

Generator AWE-GEN) 
(Fatichi, 2011) 

Method used: 
Rainfall Generator 
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Working Infrastructure 
Python for Scientific Computing 
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GCM Models and scenarios used Home 



Fitting of Stochastic Process 
Rainfall statistics at different  aggregation intervals: 

 i  [mm/hr] 12 hours 1 hour n hours 

Observed statistics 
Bound Constrained  

Optimization (l-bfgs) 

Limited 
memory 
Broyden, 
Fletcher,  
Goldfarb, 
Shanno 

Calculated statistics 

Set of model parameters NSRP 



Fitting of Stochastic Process 

Calculated statistics 

Bound Constrained  
Optimization (l-bfgs) 

x P(Change Factor) 

Set of model parameters NSRP 

Home 

Rainfall statistics at different  aggregation intervals: 
 i  [mm/hr] 12 hours 1 hour n hours 

Observed statistics 



Variability of precipitation results  
in the same GCM grid box. 

GCM grid values for Kochi location 
Period: 2081-2100 

GCM grid values for Kochi location 
Period: 2046-2065 
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Gas emissions scenarios Home 
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