

Comparison of Flow and Sedimentation Pattern for three Designs of Storm Water Tanks by Numerical Modelling

9th International Conference on Urban Drainage
Modelling, Belgrad 2012

Simon Ebbert
Nina Vosswinkel
Anne Schnieders
Christian Maus
Rainer Mohn
Mathias Uhl

- Objectives and goals
- Storm water tanks
- Requirements in Germany
- Compared storm water tanks
 - Dimensions
 - Hydraulic and particular conditions
- Results
 - Velocity distribution
 - Particle distribution
 - Sedimentation efficiency
- Conclusions

Pollution of surface waters:

- Particles in urban runoff
- Heavy metals mostly bounded at particles $< 60 \mu\text{m}$ (0.06 mm)

Treatment by sedimentation tanks

- about 30,000 storm water tanks in Germany
- investment volume 30 billion €
- efficiencies about and less than 30 %

Aim of investigation

- optimize tank design
 - flow pattern
 - sedimentation efficiency
-
- A brace symbol with a horizontal line extending from the middle of the vertical line to the right, grouping the last three items of the list.
- different dimensions of tanks

- Sedimentation of particular loads in storm water
- Application in combined- and **separate sewer system**
 - combined sewer: e.g. combined sewer overflow tank
 - **separate system**: e.g. **storm water sedimentation tank**

Relations

$$10 < L : D < 15$$

$$3 < L : W < 4,5$$

$$2 < W : D < 4$$

(according to German guidelines)

Requirements in Germany

Design of storm water sedimentation tanks

inlet requirements

ATV-A 166 [Draft 2011]

Requirements in Germany

Design of storm water sedimentation tanks

hydraulic requirements

mean horizontal velocity
(tank)

$$v_h = \frac{maxQ_{KÜ}}{W*D} \text{ (m/s)}$$

surface flow rate
(mean vertical velocity)

$$q_A = \frac{maxQ_{KÜ}*3.600}{W*L} \text{ (m/h)}$$

settling velocity
(STOKES)

$$v_s = \frac{1}{18} \rho' g d \frac{d}{v} \text{ (m/h)}$$

Compared storm water sedimentation tanks

Tank relations

	Tank 1	Tank 2	Tank 3
Length L (m)	31,25	29,74	28,23
Width W (m)	8,00	7,14	6,27
Depth D (m)	2,00	2,36	2,82
L/D	15,6	12,6	10,0
L/W	3,9	4,2	4,5
W/D	4,0	3,0	2,2

Volume of each Tank: 500 m³

Compared storm water sedimentation tanks

Hydraulic and particular conditions

Hydraulic boundary conditions

	Tank 1			Tank 2			Tank 3		
q_A (m/h)	2	6	10	2	6	10	2	6	10
v_h (m/s)	0.01	0.03	0.04	0.01	0.02	0.04	0.01	0.02	0.03

Properties of particles

Specific Density (kg/m ³)	1020				1460				2650			
v_s (m/h)	1	2.3	5	10	1	2.3	5	10	1	2.3	5	10
Diameter (μm)	181	275	405	573	38	58	85	120	20	30	45	64

Simulations by using FLUENT 13.0 CFD

- **boundary conditions:**
 - **inlet:** mass flow inlet
 - **outlet:** pressure outlet
 - **Wall-treatment:** no slip and standard wall functions
 - **roughness of the wall:** 5 mm
 - **Water surface:** symmetry plain
- **Solution method:** steady (*const. inflow*)
- **Turbulence model:** k- ϵ RNG modell
- **Sedimentation of solids:** uncoupled DPM (*Discrete Phase Model*)
- **Mesh size:** 600,000 cells (after a mesh study)

Limitations

- Resuspension based on the variability of the flow pattern cannot be modelled
- Shields does not apply for very small particles, since other effects like cohesion occur

Shields relationship

Vanoni [1975]

τ_{crit} critical shear stress [Pa]
 τ_0^* dimensionless shear stress
 β parameter

$$\tau_0^* = 0,22 \cdot \beta + 0,06 \cdot 10^{-7,7 \cdot \beta}$$
$$\beta = \left[\frac{\rho}{\mu} \cdot \sqrt{\left(\frac{(\rho_p - \rho)}{\rho} \right) \cdot g \cdot d^3} \right]^{-0,6}$$

Combination to an UDF
(User Defined Function) (Vanoni after Dufresne et. al. [2009])

Velocity distribution

Streamlines

Velocity distribution

Velocity magnitude

Particle distribution

Bed shear stress

Density 1460 kg/m^3

$v_s 2.3 \text{ (m/h)}$

$\varnothing 58 \mu\text{m}$

Particle distribution

Resuspension

Overview of all simulation results

Low surface flow rate:

- efficiency is **independent** from geometry and density - similar for all tanks

High particle density:

- no differences in efficiency between high and low flow rates for all tanks

Low particle density:

- best sedimentation efficiency in **deep** tank- especially for higher surface flow rates

The deeper the tank the higher the sedimentation efficiency for organic matter

No effect on the efficiency, when there is low organic matter, by varying the dimensions in the ranges given by German standards