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The urban drainage system in Storm- and
Wastewater Informatics (SWI1)
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The bricks of integrated control
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The Dynamic Overflow Risk Assessment
(DORA) control strategy

i

o Control strategy developed to benefit from outcomes of
SWI project

o Considers uncertainty in rainfall and runoff predictions
o Consider spatial heterogeneity of rainfall

o Optimizes the system by minimizing a global cost function
o Possible to prioritize areas of the catchment

o Possible to add additional objectives (flooding risk,
energy consumption, etc.)
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DORA — definitions (1)
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i-th basin

o Detention basins

Uncertain
o Inflow from upstream
(Qp) QF,i l LY
o Outflow (QpyT)
o
o Inflow from catchment Q|N,i
Qi) Defined by upstream Controlled by DORA
basin(s)
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DORA — definitions (2)
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o Runoff volume
o Uncertainty on
volume prediction
o Overflow probability
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DORA — Qverflow cost
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9 o Probability of overflow
o] .
O volume is calculated
o
o Risk is calculated by using
a linear overflow-cost
function
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DORA — Global overflow risk
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Cost = Nfs(ccr,i + CF,i o Chor,i)

Discount accounting for
qualitative uncertainty

Cost due to water Cost due to forecasted (we don’t know
: runoff -
already fallen in the uno everything about the
catchment ¢ future)
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Overflow cost function

o Overflow cost is defined
according to the sensitivity
of receiving waters

;€ Bathing area

€ Not sensitive
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Overflow cost function

o Overflow cost is defined

E» according to the sensitivity
€ E € of receiving waters

;€ Bathing area

€ Not sensitive

overflow risk

1 o A genetic algorithm finds
i flows that minimize
€
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A theoretical example
Inspired by Aarhus - Marselisborg catchment
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Aarhus — case study
Priority of basins
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Analysis of MPC in Marselisborg

o Simplified model
o Wateraspects (hydrological model)

o Perfect forecast (same data used for forecast and runoff)

o Analysis based on a 5-year period

o 25 biggest overflow events simulated

o Four scenarios
o Default
o Local control (based on water level in connected basins)
o DORA without rain forecasts

o DORA with forecasts
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Aarhus — Volume reduction
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Aarhus — Cost reduction
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Cost reduction [%]

Performance against return period

Cost reduction
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Cost reduction [%]

Performance against return period
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Cost reduction [%]

Performance against return period

Cost reduction
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Forecast worsen situation (1-2 cases)
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Coming soon...

How does uncertainty in flow

AN /ﬁ\:\, W future prediction affect the MPC
A 1y iIntegrated control?
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Which method for runoff flow
prediction gives better results?

Control
Strategy

Dynamic estimation of uncertainty bounds
(stochastic models — Lowe et al. Session 1.2)
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Coming a little bit later...

Can we predict the WWTP
W future capacity in the next hours?

| Can modelling of WWTP capacity
improve the performance of the
] system?

Control
Strategy @ Model I
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Fixed WWTP capacity
Vs
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Dynamic estimation of WWTP capacity (based
on capacity of biology and of clarifier)
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Conclusion

o A generalized approach for control of urban water system
iIncluding uncertainty is now available

o DORA allows the prioritization of discharge points

o Analysis on a theoretical catchment showed the benefit of
global control with respect to local RTC

o Multi-objectives cost functions can be used according to the
major issues in the system (flooding, energy saving,
pollution, etc.)

o DORA allows the development of integrated dynamic Model
Based Control (SWI concept)

More will come..stay tuned on SWI
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Event 1995-09-03
With forecasts
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