BUILDING A NORLD OF DIFFERENCE

INTEGRATED MODELLING USING DATA DRIVEN MODELS

ED GOWER JOSS PLANT

AGENDA

- Background
- Previous Modelling
- New Methodology
 - Baseline performance
 - Future performance
- Results and Discussion
- Conclusions and Innovation

Water quality assessments can be carried out without full models of the catchment

BACKGROUND

Client: UK water company

Sewage Treatment Works Upgrade Project

- Improve treated effluent quality
- Minimise construction

Water quality study required to justify proposals

REGULATORY CONTEXT

• Urban Pollution Management study

PREVIOUS MODELLING

Verified network model

NEW METHODOLOGY

Baseline performance

HISTORIC SPILL PERFORMANCE

7

INTERMEDIATE LEVEL INLET WORKS

D: RATE OF EMPTYING/FILLING OF THE INTERMEDIATE LEVEL INLET WORKS

ш

CONVERTING D (FILLING / EMPTYING) TO SPILLS

10

CONVERTING D (FILLING/EMPTYING) TO SPILLS

CONVERTING FROM D (FILLING/EMPTYING) TO SPILLS A + B - C = D

- When depth ≥85%, spills to watercourse occurring
- Available storage filled and system in steady state
- For these periods:

NEW METHODOLOGY

Future performance

REFINING METHODOLOGY

• Future scenario includes:

- Growth
- Reduced Flow to Full Treatment
- Automatic return.
- Methodology uses combination:

- Historic rainfall
- Population and infiltration removed.

FUTURE MODELLING: GROWTH

Full model inc subcatchments

Growth catchments only

FUTURE MODELLING

FUTURE MODELLING

New inflow into inlet works

KEY ASSUMPTIONS IN FUTURE MODELLING

- Future flows not throttled
- Double counting

18

CALCULATION OF RETURN FLOWS

RESULTS AND DISCUSSION

RESULTS OF THE UPM: SPILL COUNT

RESULTS OF THE UPM: SPILL VOLUME

CONCLUSIONS AND INNOVATION

CONCLUSIONS

- Using a network model not always possible.
- Network model under predicts the existing spills.
- Manual operation difficult to represent in network model
- Data driven methodology matches actual performance.
- Methodology relies on telemetry data

INNOVATION

- Uses telemetry
- Spreadsheet based
- Matches anecdotal evidence
- Accounts for manual operation

QUESTIONS?

Building a world of difference. Together

A: INFLOW FROM THE SCREW PUMPS

Historic Telemetry Depth

Head-Discharge

0-1350 l/s

B: INFLOW FROM NORTHERN TERMINAL PUMPING STATION

30

C: FLOW TO FULL TREATMENT FROM TELEMETRY DATA

RESULTS OF THE UPM

Scenario		Total Spill Spills		90%ile concentration		99%ile Concentration	
No.	Description	Volume (m3)	Per Year	BOD	Amm	BOD	Amm
1	River Only	N/A	N/A	2.78	0.09	5.5	0.38
2	River & STW (Current)	N/A	N/A	3.28	0.34	5.54	0.65
3	2006-2008 (Current)	1,557,879	36	3.42	0.36	7.01	0.73
4	River & STW (Future)	N/A	N/A	3.35	0.37	5.61	0.69
5	2006-2008 with growth	1,480,713	24	3.46	0.38	6.82	0.78
	(return flows included)						
6	2006-2008 with growth	1,157,296	20	3.44	0.38	6.54	0.75
	(return flows removed)						
		(WFD High) RE1		(4.0) 2.5	(0.3) 0.3	5.0	0.6
		(WFD Good) RE2 (WFD Moderate) RE3 (WFD Poor) RE4		(5.0) 4.0	(0.6) 0.6	9.0	1.5
				(6.5) 6.0	(1.1) 1.3	14.0	3.0
				(9.0) 8.0	(2.5) 2.5	19.0	6.0