

9th International Conference on Urban Drainage Modelling Belgrade 2012

EFFECTS OF COMPUTATIONAL MESHES ON HYDRODYNAMICS OF AN OPEN CHANNEL JUNCTIONS FLOW USING CFD TECHNIQUE

Adrien Momplot, Hossein Bonakdari, Emmanuel Mignot, Gislain Lipeme Kouyi, Nicolas Rivière, Jean-Luc Bertrand-Krajewski

Tuesday, September 4th

SUMMARY

- Background Objectives Methodology □ Results Conclusions
- Perspectives

BACKGROUND

Junctions: complex structures often encountered in sewers

Exhibit a complex flow pattern that leads to complex: hydrodynamics/pollutants transport/flow measurement, etc.

BACKGROUND

4

□ Some key flow patterns - Weber et al. (2001):

- a re-circulation zone
- a shear plane
- a particular velocity profile downstream the junction

BACKGROUND

- Using CFD modelling/lab experiments/field data may help to understand junction hydrodynamics
- Regarding CFD modeling (RANS-based approach):
 Depends on multiple parameters
 Mesh is one of the most important
- Effects of CFD strategy (<u>mesh</u>, turbulence models, discretization schemes, etc.) on simulations results ?

OBJECTIVES

- Mesh sensitivity study: influence of mesh density and shape on CFD solutions (hydrodynamics representation)
- Define an appropriate CFD strategy related to the simulation of junction steady flows:
 - Computational Mesh: density ? shape ?
 - Turbulence model?
 - Discretization schemes?
 - Pressure-velocity coupling approach?

7

Velocity field measurement using PIV technic at LMFA-INSA (Lyon):

Adrien Momplot - Hossein Bonakdari - Emmanuel Mignot - Gislain Lipeme Kouyi - Nicolas Rivière 04/09/2012 - Jean-Luc Bertrand-Krajewski

Global CFD strategy:

- Computational meshes: hexa and tetra cells
- Boundary conditions : Velocity inlet/pressure outlet/ fixed lid/roughness
- Turbulence model: RNG-k-epsilon
- Second-order spatial discretization schemes
- Pressure-velocity coupling strategy: SIMPLE

9

CFD modelling of lab facility flows according to different cells arrangement, gathered in 3 groups:

An additional mesh with the same density as mesh 9 and tetrahedral cells (labeled Mesh 10)

10

- Mesh sensitivity study: ability to represent 4 key flow characteristics regarding PIV data:
 - Re-circulation zone after the junction:
 - max width of the recirculation
 - Length of the recirculation
 - A disturbed downstream velocity profile
 - The shear plane position in the junction

11

Comparison of velocity fields:

Adrien Momplot - Hossein Bonakdari - Emmanuel Mignot - Gislain Lipeme Kouyi - Nicolas Rivière 04/09/2012 - Jean-Luc Bertrand-Krajewski

12

Comparison of velocity fields:

Adrien Momplot - Hossein Bonakdari - Emmanuel Mignot - Gislain Lipeme Kouyi - Nicolas Rivière 04/09/2012 - Jean-Luc Bertrand-Krajewski

13

Comparison of velocity fields:

Adrien Momplot - Hossein Bonakdari - Emmanuel Mignot - Gislain Lipeme Kouyi - Nicolas Rivière 04/09/2012 - Jean-Luc Bertrand-Krajewski

14

Comparison of velocity fields:

04/09/2012

15

Comparison of velocity fields:

04/09/2012

16

Comparison of shear plane positions:

17

Comparison of shear plane positions:

Comparison of the re-circulation zone sizes:

Normalized length:

	Measured	Mesh 1	Mesh 6	Mesh 8	Mesh 9	Mesh 10	Gurram (1997)	Borghei (2003)	Best (1984)
z = 3 cm	1.25	1.33	2.33	2.00	2.05	2.37	-	-	-
z = 9 cm	1.97	2.13	2.67	2.77	2.37	2.50	2.53	1.70	1.87

Normalized maximum width:

	Measured	Mesh 1	Mesh 6	Mesh 8	Mesh 9	Mesh 10	Gurram (1997)	Borghei (2003)	Best (1984)
z = 3 cm	0.19	NaN	0.20	0.27	0.28	0.38	-	-	-
z = 9 cm	0.33	NaN	0.20	0.33	0.35	0.30	0.37	0.47	0.37

CONCLUSIONS

Proposed CFD strategy seems relevant in this case

- A minimum mesh density is required (30x30x30 mm) to represent satisfactorily the downstream velocity field
- Shear plane position near the free surface is easily reproduced (even with coarsened meshes!)

Shear plane near the bottom of the channel is not well reproduced

CONCLUSIONS

- Tetrahedral cells seem less regarding the representation of the max width of the recirculation close to the bottom, although it's pretty good for the velocity fields representation
- Length of re-circulation zone is systematically overestimated
- Max width of re-circulation zone near the bottom of the channel is overestimated
- Max width of re-circulation zone near the free surface is well reproduced

PERSPECTIVES

Improve the model: wall function, pressure-velocity coupling (PISO?), etc.

Run a non-uniform mesh, with a higher density in high gradient zone and lower density elsewhere

□ Effect of a free surface capturing model?

PERSPECTIVES

Study other cases of junction: different angles (30, 45 and 60°), different shape (circular, trapezoidal, egg-shaped)

 Development of an optimal location tool for discharge sensors placement downstream to junctions in sewers (WP 3.5 - European Project FP 7 PREPARED)