9th International Conference on Urban Drainage Modelling, Belgrade 2012 C4. Climate change impacts, pp.287-288

Modelling Climate Change and Urbanization Impacts on Urban Stormwater and Adaptation Capacity

Linmei Nie¹, Pingju Li², Vegard Nilsen³, Lars John Hem¹, Sveinung Sægrov⁴

1. SINTEF Building and Infrastructure Research, Forskningsveien 3b, 0314 Oslo, Norway

Outline

- Drivers
- Methodology
- Case study
- Results and discussions
- Conclusions

Drivers

- Climate change: More frequent intense precipitation, increase temperature, and sea level rise
- Urbanization: growth population, increase of water demand and sewage discharge, and impervious areas
- Aging drainage networks and insufficient drainage capacity

Methodology

Technology for a better Society

SINTEF

Delta-Change Model (DCM) approach

- It compares the regional climate model results to the observed precipitation values.
- Factors obtained to describe the relative change in precipitation are called Delta-Change Factors (DCFs).
- These factors are then applied to the observed high resolution precipitation time series to obtain projections of future precipitation time series with the same temporal and spatial resolutions and IDF curves.

Seasonal Delta-change factors

IDF for the present (left) and future (right) climate

For scenario B. Precipitation intensities increase varying from 17%-23%

Hyetograph for 1 in 2/20/100 years' rain

- Rain T= 1 in 2 years for CSO control
- Rain T= 1 in 20 years for flood control
- Rain T= 1 in 100 years for test consequences and adaptive capacity in extreme weather condition

Urbanization

Growth of population

ΈF

Water consumption in residential areas

Specific water consumption (1/pe-day)	Present (control)	Scenario A2	Scenario B2
Household	160	160	150
Unregistered use	15	15	15
Leakage	100	100	55*
Sum	275	275	220

Case study

Residential area 112 haDHI-MOUSE model:

- Existing sewers: 15 km long sewers, 411 manholes, 2 overflow weirs (3 original ones have been closed) and 15 stormwater outlets.

- 66% combined sewers

- calibrated according to the measured precipitation, temperature, water level and sewer discharged during June-December 2009.

SINTEF

- Problem: frequent CSOs

Adaptation potentials

- B2.1 Disconnect water from building roofs
- B2.2 Increase retention capacity (swale & infiltration pond)
- B2.3 Water saving and leakage reduction
- B2.4 Structural measures, e.g. use large pipes and detention basins
- B2.5 All

Simulation storylines and scenarios

Parameter	Storyline1	Storyline 2	Storyline 3				
	CONTROL	A2	B2.1	B2.2	B2.3	B2.4	B2.5
Population	7692	9984			9984		
Total catchment area ^a (ha)	112	112			112		
Impervious surface area (ha)	28.07	31.1	23.9	31.1	31.1	31.1	23.9
Swale & Infiltration (mm)	0.6	0.6	0.6	350	0.6	0.6	350
Water consumption (l/pe-day) ^b	275	275	220	220	200	220	200
Detention (large pipe and basin)	Existing sewers (CON, A2, B2.1-B2.3)					Site-specific (B2.4-B2.5)	

Results and discussions (1) - Total in-outflow

For a 2-yr rain event minor adaptation is needed to achieve the goal for CSO control.

Results and discussions (2) - discharge

Results and discussions - no. of flooding manholes

Conclusions

- In addition to the changes in the climate, taking into account the changes the built environment and the physical systems
- A precise assessment requires for data and scenarios with fine temporal and spatial resolutions
- Uncertainties exist in projections of climate scenarios, growth of population and their settlement, and plan for land uses in a long term perspective
- Of the four selected adaptation measures, the simulation results indicate that disconnecting water from building roofs is the most efficient measures to reduce sewer surcharge.
- The paper focus on the effects of technical solutions for adaptation, economic issues are not included. Demonstration projects in the real world are essential to validate the simulation methods and results - coming EU Calls.

Thank you very much for your attention

Contact information: Linmei Nie Linmei.nie@sintef.no

SINTEF Building and Infrastructure – Science and Technology for a better society

