

9th International Conference on Urban Drainage Modelling – Belgrade 2012

Optimization of a hydrodynamic separator using a multiscale CFD approach

Vivien SCHMITT ¹, Matthieu DUFRESNE ¹, José VAZQUEZ ¹, Martin FISCHER ¹, Antoine MORIN ².

 Institut de Mécanique des Fluides et des Solides de Strasbourg (CNRS, University of Strasbourg, ENGEES, INSA)
 2 rue Boussingault, 67000 Strasbourg France vivien.schmitt@engees.unistra.fr

> ² Hydroconcept ZA Trappes Elancourt
> 46 avenue des frères Lumière 78190 Trappes France

Conclusion

1. Introduction

2. Objectives
 3. Methods
 4. Results
 5. Conclusion

IntroObjectivesMethodsResultsConclusion* Stormwater pollution:• plastic debris• coarse sediments• large particles

* Hydrodynamic separator :

structure used to remove gross pollutants from water

Introduction

2. Objectives

Methods
 Results
 Conclusion

Objectives Methods Results Conclusion Intro Introduction 2. Objectives 3. Methods Results Conclusion 5.

Intro	Objectives	Methods	Results	Conclusion
 Intro Object Meth 	duction ctives ods			
4.Re	sults			
• Vo • O	alidation o ptimizatio	of the meth n	od	
5. Conc	lusion			

Comparison of the velocity field for a flow rate equal to 25 L/s at z = 38 cm

Intro Obje		ectives	tives Methods		Results		Conclusion		
★ Global/local values:									
期			Discharg Q _{circulatio}	ge ratio n/Q _{inlet}	V _{grid}	(m/s)	V _{under}	_ _{grid} (m/s)	
	Measureme	nts	10,	1	0	,73		0,76	
	CFD		10,	1	0	,84		0,82	
	Error		0,1	%	1,	5%		8%	
		****	Compariso	n for a flou	v rate equ	al to 25 L/s			

Intro	Objectives	Methods	Results	Conclusion
 Intro Object Methodal Result 	duction ctives ods ts			
5. Co	nclus	ion		
				28

THANK YOU FOR YOUR ATTENTION

contact : vivien.schmitt@engees.unistra.fr

× CFD simulations:

2 500 000 cells for the local model
1 200 000 cells for the global model
Turbulence model: RSM
Discretization scheme: 2nd order

Validation of the local model
K_{ovp} = 1700

 $K_{exp} = 1700$ $K_{cfd} = 1900$

	Q (L/s)	H _{exp} (m)	H _{cfd} (m)	
	15	0.028	0.017	
	25	0.054	0.55	10 C .
1. M. 1.	50	0.203	0.225	

CycloneSep Trouville/Mer (France)

