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Ò  Stormwater pollution :  
•  plastic debris 
•  coarse sediments 
•  large particles 

 
 
 
 

Ò  Hydrodynamic separator :  
•   structure used to remove gross pollutants from water 
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Ò  The CycloneSep® : the pilot of IMFS lab 
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Ò  The CycloneSep: large waste in rotation 
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Ò  Computational Fluid Dynamics : hydrodynamic visualization 
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Storage tank Lamella settlers Hydrocyclone 

Dufresne et al. 2008 Vazquez et al. 2008 Lee et al. 2010 
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Discretization of the domain: 

discretization of the volume 
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Difficulties in mesh generation 

Too long computational time 
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Optimization Multiscale method 
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Ò  Boundary conditions 

 
 

Qscreen 

 
•  Vout –Vin à Qscreen 
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0.05m 

0.07m 



Local Model 

Ò  Estimation of the energy loss caused by the screen 
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Global Model : 
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Ò  Boundary conditions 

 
 •  Vin impose the discharge 

•  Pout impose the downstream water level 
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Ò  Reproduction of the Energy loss in the global model 
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•  Source term in the CFD code: 
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Ò  Comparison: CFD/ Measurements 
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Velocity field 
(mid screen) 
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Ò  Velocity fields 
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Experimental measurements CFD 

Comparison of the velocity field for a flow rate equal to 25 L/s at z = 38cm 

18 

9 cm 



Intro Objectives Methods Results Conclusion 

Ò  Comparison: CFD/ Measurements 
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Inlet discharge 

Velocity under 
the screen 

Velocity near the 
screen 

Discharge in 
circulation 
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Ò  Global/local values: 

 
 

Discharge ratio 
Qcirculation/Qinlet 

Vgrid (m/s) Vunder_grid (m/s) 

Measurements 10,1 0,73 0,76 

CFD 10,1 0,84 0,82 

Error 0,1% 15% 8% 
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Comparison for a flow rate equal to 25 L/s 



Local Model Global Model 
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Local phenomena Global behaviour 
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Pressure effects near the 
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Ò  Shape comparison : expanded metal VS perforated screen 

ΔP = 500 Pa 

ΔP = 500 Pa 

CycloneSep screen 

Hexagonal holes Circular holes 

ΔP = 60 Pa ΔP = 30 Pa 

!
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ΔP = 250 Pa 



Ò  Shape comparison : influence of hole size 

ΔP = 500 Pa 

45° 25mm x 5,2mm 45° 17mm x 1,65mm 
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!ΔP = 100 Pa !ΔP = 150 Pa 



Ò  Shape comparison : influence of metal inclinaison 

45° 17mm x 1,65mm 60° 17mm x 1,65mm 
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!ΔP = 150 Pa !ΔP = 250 Pa 
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Minimize the clog 

CFD Optimization 

Control the hydrodynamic 
behaviour 
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Minimize the clog 

CFD Optimization 

Control the hydrodynamic 
behaviour 

Maximize velocity near the screen 
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Minimize the clog 

CFD Optimization 

Control the hydrodynamic 
behaviour 

Installation of singularities  

Maximize velocity near the screen 
Minimize velocity under the screen 



ΔP = 500 Pa 

Ò  Optimization of the device : (Q=25L/s) 

6 deflectors 
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Ò  CFD multiscale approach is a good alternative to 
optimize a device at different scale 
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Avoid the clog 

Local model Global model 

expanded metal 
screen 

installation of a disk 
plate 
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Ò  CFD simulations: 

•  2 500 000 cells for the local model 
•  1 200 000 cells for the global model 
•  Turbulence model: RSM 
•  Discretization scheme: 2nd order 

 
 



Ò  Validation of the local model 
•  Kexp = 1700 
•  Kcfd = 1900 

 
 

Q (L/s) Hexp (m) Hcfd(m) 

15 
 

0.028 0.017 

25 0.054 
 

0.55 

50 0.203 0.225 



Ò  CycloneSep Trouville/Mer (France) 

 
 


