

Impact and compensation of an intrusive sensor on discharge in open channels

05.09.2012

Laurent SOLLIEC^{1,2}, José VAZQUEZ¹, Matthieu DUFRESNE¹, Michael TEUFEL²

1 Fluid and solid mechanics institute of Strasbourg (IMFS) 2 Rue Boussingault, 67000 Strasbourg, France. <u>matthieu.dufresne@engees.unistra.fr, jvazquez@engees.u-strasbg.fr</u>

2 NIVUS GmbH Im Täle 2, 75031 Eppingen, Germany. <u>laurent.solliec@nivus.com</u>, <u>michael.teufel@nivus.com</u>

9th UDM Conference, Belgrade, Serbia

Impact and compensation of an intrusive sensor on discharge in open channels

9th UDM Conference, Belgrade, Serbia

Plan of the presentation

1.Context and Objectives
2.Methodology
3.Results
4.Conclusion and outlook

Context

Flow rate measurement in sewer systems

- European water guidelines
- Diagnostic
 - Permanent measurements
 - Measurements campaigns
- Use of ultrasounds techniques
 - CW Doppler
 - Profiler (here cross correlation)

Methodology

- Transit time
- Focuses on smaller dimensions
 - From DN 250
 - 5 cm< Water level < 50 cm</p>

Illustration

Conclusion

Results

4

Context

Context Sensor Development

Characteristics

Context

Methodology

Results

Context:

Illustration of the influence of the sensor body

Objectives

Methodology of evaluation of the influence of the sensor

- Phenomenology
- Methodology (CFD)

Development of a correction method

- CFD observations
- Mathematical function
- Validation

Context

Methodology

Results

Influence of an obstacle Description and phenomenology

Fully developped profile

Separation zone

reattachment zone

8

Context

Methodology

Results

Influence of an obstacle Methodology

Hypothesis: The influence of obstacle body is depending on a certain number of parameters :

- flow field (level, velocity distribution, gravity),
- channel dimensions,
- sensor dimensions,
- sensor position

 Reproduction of phenomenon in different cases with CFD modeling of a test rig

- Different water depths
- Different Froude number Fr (definition of the flow nature): sub-critical

Methodology

Results

CFD Modeling Methodology

Definition

- Turbulence model : RSM
- Surface model: VOF
- Meshing: tetrahedral closer the sensor, hexahedral. Particular attention to the wall condition.
- Numerical scheme: second order except HRIC method for the VOF model.

Statistical Model

Observations (from CFD)

- The sensor influence is significant (>5%) closed to the sensor.
- For higher level, the impact is reduced.
- When the Froude number is high, the influence is lower

Hypothesis after CFD investigations

The sensor influence function I_{sensor} is supposed to be dependent on:

- water level h and froude number fr
- sensor height H
- Y the depth position

Statistical model

$$I_{sensor} = \frac{U_{sensor} - U_{FD}}{U_{FD}} = f\left(\frac{y}{H}, \frac{h}{H}, Fr\right)$$

 $a_{i\prime}, b_{i\prime}, c_{i}$ constant values

$$I_{sensor} = \sum_{i=0}^{3} a_i \cdot Fr^{b_i} \cdot \left(\frac{h}{H}\right)^{c_i} \cdot \left(\frac{y}{H}\right)$$

y/H<10

11

Context

Methodology

Results

Validation Experimental conditions

Sensor position

12

Context

Methodology

Results

Magmeter

Validation

Measurement comparison: with/without sensor

Validation

Measurement comparison: application of the correction function

Influence of the sensor on the flow rate

Q/h	Without integration	With integration
231/s	-6%	-2 %
501/s	2%	0,6%
701/s	2,4%	2,4%

Context

Methodology

Results

Conclusion and Outlook

Conclusion

Conclusion

- Interest of CFD to solve 3D flow field problem
- The sensor body has an effect on the velocity profile and give wrong readings
- The sensor body has an effect on the flow rate
- The correction function is compensating these effects.

Outlook

- Extension of the CFD library to supercritical flows
- Extension to other dimensions and geometry (circular)

Methodology

Results

- Extension to a more general function
- Extension to side mounting sensor

16

Context

Thanks for your attention

Contact: Laurent SOLLIEC

<u>laurent.solliec@nivus.com</u>

9th UDM Conference, Belgrade, Serbia