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These guidance notes have been written by the DMA Team of the Water Loss Task 
Force. The Water Loss Task Force was set up at the IWA “Water Loss Managent – A 
Practical Approach” Speciality Conference in Cyprus in 2002. At that conference the 
production of these guidance notes was also proposed in order to meet the need for 
information on best practice for DMA Management. The main authors were:  

 John Morrison. Associate Consultant -Hyder Consulting Ltd (Morrison Technical 
Support),Penrhos, Ffordd Maelog Rhosneigr, Anglesey LL645QE UK email: 
jaemorrison@aol.com +441407810797 

 

Stephen Tooms. Hyder Consulting Ltd, Aston Business Village, Rocky Lane, 
Birmingham, B6 5RQ, UK, email: steve.tooms@hyderconsulting.com, tel: +44 
870 000 3007 

 
Dewi Rogers, Dewi Srl, Via dei Ceraioli, 15 – 06080, Colombella(Pg), Italia. 
Email: dewi@dewiltd.tin.it tel: +39 075 5917104 
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The DMA Team would like to acknowledge the help and support of other members of 
the IWA Water Loss Task Force, who have made many constructive comments on the 
content and layout of the Guidance Notes, provided content in the form of pictures and 
text on specific subjects, provided the case studies included here as appendices  and 
acted as proof readers.  

The production of this document has been sponsored by Hyder Consulting plc.  
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The Water Loss Task Force (WLTF) is part of the International Water Association’s 
Specialist Group on Efficient Operation and Management of Urban Water Distribution 
Systems.  The vision of the WLTF is to “provide leadership in the field of Water Loss 
Management through effective and sustainable international best practices”. 

The mission of the WLTF is accomplished by:  

• its strong international membership, 

• the dedication and commitment of its members, and 

• the participation of the many research scientists and professionals in testing, 
verifying and challenging current and proposed techniques and practices. 

It is evident that water is a limited resource in many parts of the world, a situation that 
has highlighted, amongst other things, the need to reduce leakage from urban water 
distribution systems to levels that are considered economically acceptable. We firmly 
believe that Water Loss Management is of fundamental importance to improving the 
efficiency of many water networks all over the world in order to ensure long-term 
environmental and societal sustainability.  

The WLTF is continuously building and expanding on current and new initiatives such 
as:  

• Utility Benchmarking and Performance Indicators,  

• District Metered Areas and Pressure Management,  

• Real and Apparent Losses,  

• Leak Detection and Repair,  

• Economic Level of Leakage,  

• Active Leakage Control, 

• Training and certification. 

The practices promoted by the WLTF are well documented in articles, conference 
proceedings, software, manuals and text books. The WLTF will continue expanding 
Water Loss Management strategies and developing new research initiatives which can 
be universally applied.  

Within the above context the WLTF has developed the District Metered Area (DMA) 
Guidance Notes, a comprehensive document on DMA management, a well proven 
technique which when implemented correctly in conjunction with other measurers can 
effectively assist in reducing and/or monitoring leakage levels in a distribution network.  

The Guidance Notes is the result of endless hours of hard work by many dedicated 
people in an effort to put together in a simple, practical and easy to follow step by step 
methodology the technique of DMA management which has been practised around the 
world for many years with excellent results, examples of which are included in these 
Guidance Notes. 
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Furthering knowledge and promoting best practices internationally in the field of Water 
Loss Management is of the utmost importance to the WLTF. To this end it was decided 
that this document is made freely available to anyone who wishes to use it. The 
Guidance Notes can be downloaded free of charge from the web site of the Water Loss 
Task Force ( www.iwaom.org/wltf ). 

Bambos Charalambous 

Chair,  

Water Loss Task Force, 

February 2007 
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These Guidance Notes are intended as an introduction for leakage 
practitioners to the benefits, design and management of active leakage 
control activities based on the use of District Metered Areas (DMAs). It is 
part of a series of Guidance Notes prepared by the IWA Water Loss Task 
Force to cover all aspect of Water Loss Management. 

"("� * �  � � ��� �� �
The Guidance Notes are aimed at leakage practitioners that have little or 
no experience of leakage control using DMAs, and has drawn on the 
experience of leakage engineers all over the world to create a best practice 
for DMA management. The Guidance Notes should be seen as a general 
guide which must be adapted to local conditions. 

"()� 
 � ��� ���� � �� ��
 � � ��  �  � � � � � ��
The concept of DMA management was first introduced to the UK water 
industry in the early 1980’s in “Report 26 Leakage Control Policy & 
Practice, (UK Water Authorities Association (1980))”. In this report, a DMA 
is defined as a discrete area of a distribution system usually created by the 
closure of valves or complete disconnection of pipe work in which the 
quantities of water entering and leaving the area are metered. The flow is 
analysed to quantify the level of leakage. In this way the leakage 
practitioner can determine more precisely where and when it is most 
beneficial to undertake leak location activities. 

The process of leak identification, location and repair is known as Active 
Leakage Control, or ALC. 

"(+� �  �  � � � � � ��� ��
 � � ��
Leakage control by ALC has proved to be very successful as part of an 
overall plan to reduce and subsequently maintain leakage. Over the last 
quarter of a century, it has been applied with much success in networks all 
over the world. But the technique requires careful understanding and 
should not be considered as a quick fix. Instead, it is a tool to allow a more 
efficient management of leakage, as it requires robust management and 
appropriate manpower resources to be successful.  

The introduction of leakage control using DMAs usually requires significant 
short and long term funding to be effective. In the short term it is necessary 
to fully understand the existing network configuration and to plan and 



 

!  � � �+


 � � �� � ��  � � � �� � �� ��

� "	#$ "#$ %�"&$ %�%

�

implement measures required for DMA management. In the long term it will 
be necessary to maintain the system both in terms of its operation, the 
analysis of data and location and repair of bursts. 

"(,� -�� � ��� � . � �� � ��  ��� � �� � ��  � � � �� � �� ��
The items covered by these Guidance Notes include the following: 

• Design of DMAs; 

• Analysis of flow measurement; 

• Prioritising of leak location from DMA data; 

• Management of DMAs. 

Information from successful examples of DMA design and construction has 
been provided by various practitioners and is included in Appendix F. 
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As water networks deteriorate, they become prone to leakage. In addition, 
new networks frequently include leaks as a result of poor installation 
practice and incorrect materials. Where the distribution network comprises 
hundreds or thousands of kilometres of pipe work, it is not an easy task to 
locate the bursts and breakages, particularly as many are invisible. This 
situation progressively worsens until, in extreme cases, it becomes 
necessary to ration the water for part of the day by closing off the supply.  

The solution is to create a permanent leakage control system by dividing 
the network into a number of sectors called DMA so that the leakage in 
each sector can be quantified and the detection activity can always be 
directed to the  part of the network with the most leakage. Once an 
acceptable level of leakage is achieved, the flow into the area is usually 
monitored to enable new leaks to be identified immediately. 

)("� ' � � ��� ��� ����  �  � � �/�� �  �� �� �
 � � �0 �
The traditional approach to leakage control has been a passive one, 
whereby the leak is repaired only when it becomes visible. The 
development of acoustic instruments has significantly improved the 
situation, allowing invisible leaks to be located as well. But the application 
of such instruments over the whole of a large water network is an 
expensive and time-consuming activity. The solution is a permanent 
leakage control system whereby the network is divided into District Metered 
Areas (DMAs) supplied by a limited number of key mains, on which flow 
meters are installed. In this way it is possible to regularly quantify the 
leakage level in each DMA so that the leakage location activity is always 
directed to the worst parts of the network.  

An important factor in lowering and subsequently maintaining a low level of 
leakage in a water network is pressure control. The division of the network 
into DMAs facilitates the creation of a permanent pressure control system, 
thus enabling pressure reduction in DMAs which reduces the level of 
background leakage, the rate of flow of individual bursts and the rate of the 
annual burst frequency. 

Many water distribution networks are managed without using DMAs. 
However those that have successfully achieved low leakage levels without 
DMAs tend to have a combination of high quality infrastructure in good 
condition, an efficient repair operation and low, stable pressures.  
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The key principle behind DMA management is the use of flow to determine 
the level of leakage within a defined area of the water network. The 
establishment of DMAs will enable the current levels of leakage to be 
determined and to consequently prioritise the leakage location activities. By 
monitoring flows in the DMAs it will be possible to identify the presence of 
new bursts so that leakage can be maintained at the optimum level. 
Leakage is dynamic and whilst initially, significant reductions can be made, 
levels over a period of time will tend to rise unless on-going leakage control 
is carried out. DMA management should therefore be considered as a 
method to reduce and subsequently maintain a low leakage level in a water 
distribution network.  

The key to DMA management is the correct analysis of the flow to 
determine whether there is excess leakage and identify the presence of 
new leaks.  

Real Losses are the difference between the system input and the total 
customer consumption (corrected for measurement inaccuracies) in a 
defined area. This is made up of Leakage (from mains, services up to the 
point of consumption and storage tanks) and Overflows (mainly from 
storage tanks).  

Traditionally real losses were quantified as a volume and were calculated 
on an annual basis.  However, this approach does not allow the necessary 
fine control of leakage to be achieved as it can take several months for a 
major change to be identified and the precision of leakage measurement is 
poor.  

The extent of leakage can be gauged by assessing the 24-hour flow pattern 
of a network. A limited variation between the minimum and peak flow, 
particularly in a network with little industrial night use, is indicative of a 
leaky network. However this approach does not allow the leakage level to 
be directly quantified. 

Leakage is most accurately determined when the customer consumption is 
a minimum, which normally occurs at night. This is the principle of minimum 
night flow originally recommended in the UK document Report 26 (1980).  

The size of the DMA will influence the level of burst leakage that can be 
identified. A large DMA will tend to have more leakage and customer night 
use, which will mean that a burst represents a smaller percentage of the 
minimum night flow, thus reducing its definition.  

Figure 1 shows the typical variation of minimum night flow in a DMA in 
which there is little seasonal variation in night consumption. The presence 
of reported and unreported bursts can be identified. 
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Interpritation of variation in Miminum Night Flow
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Figure 1 Variation in minimum night flow over time 

If all detectable leaks and bursts are promptly repaired, then the lowest 
minimum measured night flows will consist only of customer night use and 
background (undetectable) leaks, as shown in Figure 2. 

Typical Minimum Night Flow into a DMA
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Figure 2 Variation in time of leakage 

Customer night use varies on a weekly and seasonal basis in most DMAs, 
so it is usually necessary to make some appropriate local judgement when 
interpreting components of night flows.   
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In countries where the consumption is metered, it is possible to accurately 
estimate the real night use of the customers by applying a typical night 
factor to the average measured consumption. This is then subtracted from 
the minimum night flow in the DMA to yield the effective leakage value. 
Where there is little or no customer metering, it is necessary to apply an 
estimated value for the legitimate night use. 

The simplest approach to assess the data is to express the night flow (say 
in m3/hour) as a % of the average daily flow. If this value is higher than the 
pre-determined guideline value, it indicates the need for a leakage location 
intervention. However, ‘guideline’ values can vary significantly between 
countries. For example in Germany a 5% value is applied whilst in the USA 
the corresponding value is equivalent to 35%. An alternative qualitative 
parameter is used in Japan to express the measured minimum night flow in 
terms of the length of main (m3/km/hour) whilst in the UK the connection 
density of is often used (m3/connection/hour). As the management of DMAs 
involves comparing existing value with the target value, the choice of 
parameter should reflect the local requirements and characteristics of the 
water network.   

As part of a major initiative by the UK industry to gain further understanding 
of leakage, a more advanced and detailed component based analysis of 
the night flow was developed. 

)(+� � � � � � �� ��� � � � � � � � ����  �  � � �
Leakage can be considered to be composed of two main components. 

• Background Leakage is the aggregation of sources of leakage 
from all fittings on the distribution network that are individually too 
small to be detected by visual or acoustic inspection for leakage. 
Pressure management has a major influence on this component of 
leakage. (Background leakage are individual leaks with flow rates 
less than 0.25 m3/hr at 50 m pressure which typically represents the 
minimum leak that can realistically be detected with modern 
detection technology) 

• Burst Leakage is the loss of water resulting from bursts on the 
distribution network, which can be further classified as reported and 
unreported. The total amount of leakage from these bursts is 
affected by the speed with which the location of the burst is 
identified and subsequently repaired; it is therefore the control of 
this duration or runtime of the burst that minimises leakage.  

Burst leakage volume =(the rate of flow of burst) x (runtime of burst) 

Reported bursts are defined as those bursts that are reported to the water 
utility, typically by customers who have supply problems or by the public 
observing water escaping from the ground. 

Unreported bursts are defined as those bursts that would remain 
undetected unless detection measures are undertaken. 
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Reported bursts are usually visible and often have a high flow rate. 
However, the greatest annual volume of losses is often generated by the 
unreported bursts, as their runtime is usually longer.  

The runtime of a burst (the total time period a burst runs for), can be split 
into three distinct periods, which are termed awareness, location and 
repair.  

• Awareness is the time from when a burst first occurs until the water 
utility is aware that it has occurred. 

• Location is the typical time it takes to pin point the burst. 

• Repair is the typical time it takes to carry out the repair once the 
burst has been pin pointed including planning and statutory notices 
to highway agencies. 

For the reported bursts, awareness and location times are usually short, as 
the leakage is either immediately visible or needs to be located to resolve 
customer complaints. It can be therefore independent of any active leakage 
control management systems. 

For the unreported burst, the awareness time is affected by the leakage 
management practices: without leakage management, the utility will remain 
unaware of its occurrence. If the network is surveyed for unreported leaks 
once a year then on average unreported burst runtime would be six months 
plus the time to carry out the repair.   
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Figure 3: Effect of number of surveys per year on awareness time 

The regular analysis of the DMA flow will potentially reduce the runtime by 
reducing the awareness time. So if DMA flow is analysed every month, then 
on average the awareness of an unreported burst runtime would be 15 
days. For the monthly example the total runtime of a typical unreported 
burst would be: - 

• Awareness 15 days 
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• Location typically 5 days  

• Repair typically 10 days  

• Total runtime      30 days 

It should be noted that location time and repair times will be dependent on 
local practice, manpower availability and local legislation regarding utility 
activity in highways. 

Figure 4 shows the importance of dealing with bursts other than those 
reported by the public. The total runtime of larger (reported) burst tends to 
be much less than that of the smaller bursts. The much longer awareness 
and location time of these smaller bursts can lead to higher overall losses.   

Figure 4 Effect of burst duration on total leakage 

 

It is therefore the analysis of the flow in the DMA that an unreported burst 
has occurred that is the key factor to controlling leakage. 

The principal objectives of analysing night flows in a DMA are therefore: 

• To identify the presence of unreported leaks and bursts so as to 
limit their average run-time. 

• To identify which parts of the network require active leakage 
location thus enabling resources to be deployed most effectively. 

)(,� -� �� �� ���� � ���� � � � �
DMA management can be utilised in networks which are subject to 
intermittent supply. The major difficulty relates to quantifying the leakage 
level, as most customers tend to store water when it is available to cover 
the hours of interrupted supply. However, the principles of quantifying the 
leakage level remain the same. If customer metering is available and is 

Distribution Main burst with flow rate of 4 m3/hour
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rate
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Service Pipe leak with flow rate of 0.4 m3/hour
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Flow
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reliable, then it is necessary just to adjust the average consumption to 
compensate for the reduced hours of service. If reliable consumption data 
is not available, then it will be necessary to undertake monitoring on a 
representative sample of customers to obtain typical values.  

In some cases it might be possible to supply the DMAs on a 24-hour 
rotational basis so that a minimum night flow can be measured. Care is 
needed however that increased wastage (over flowing tanks, unauthorised 
consumption) does not affect the data. 

It has been shown that intermittent supply is often a consequence of high 
leakage. Consequently the estimate of customer consumption is unlikely to 
have a significant effect on the total leakage level. When the largest leaks 
have been repaired, the period of intermittent service can be significantly 
reduced and possibly even eliminated, thus simplifying significantly the 
DMA management.  

)(1� 3 ��� � ��� ��� �� ��� �� ��
The effect of pressure, though well understood in theory, has only recently 
been appreciated in the management of leakage, both in terms of reducing 
and maintaining a low level of leakage in a water network.  

Considerable work has been undertaken to understand the relationship 
between pressure and leakage, which is outside the scope of these 
Guidance Notes.  

In essence, the simplest and most reliable expression for the relationship 
between pressure and leak flow rates is:  

  L1 = Lo (P1 / Po)N1 

Where Po and Lo are the initial pressure and leak flow rate in the network, 
P1 & L1 are the values at a revised pressure, and the exponent N1 typically 
varies from 0.5 to 1.5, for individual DMAs, depending upon the 
predominant type of leaks, and whether pipe materials are rigid or flexible.  

The average N1 value for large systems with mixed pipe materials is often 
assumed (for simplicity) to be 1, implying a linear relationship between leak 
flow rates and pressure.  

The pressure in a network varies according to the flow. So as the flow 
increases (e.g. at times of peak demand) the pressure will reduce, thus 
reducing leakage as shown in Figure 5.  

 



 

!  � � �	"


 � � �� � ��  � � � �� � �� ��

� "	#$ "#$ %�"&$ %�%

�

 

 

 

 

 

Figure 5: Variation of flow, pressure and leakage in a water network 

Accordingly, the leakage rate is not constant over a 24-hour period. The 
parameter used to relate the night leakage rate to the daily leakage rate is 
known as the ‘Night-Day Factor’ (NDF), (hour to day factor in UK) and is 
determined as follows: 

Daily leakage volume = NDF x night leakage rate per hour 

Where NDF is expressed in hours per day. 

Therefore the daily savings will be  

(L1 - Lo (P1 / Po)) * NDF 

For DMAs with gravity supply, the NDF is usually less than or equal to 24 
hours per day, and for low pressure gravity systems with large frictional 
head losses, the NDF can be as low as 12 hours per day. However, for 
DMAs supplied by direct pressure, or those with pressure modulation 
devices (based on time, or flow), the NDF is usually greater than 24 hours 
per day, and can be as high as 36 hours per day. 

The NDF is clearly a major factor which must be considered when using  
night flows to estimate daily and annual leakage. For this reason, it is 
always preferable to express leakage rates based on measured night flows 
on a ‘per hour’ basis, and leakage rates based on water balances on a ‘per 
day’ basis.   

The approach for calculating the NDF is included in Appendix A. 
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The division of a large water network can be a delicate operation which if 
not undertaken with care can cause supply and quality problems. However, 
if approached and undertaken correctly, even the largest and most complex 
networks can be successfully divided as the numerous examples from all 
over the world testify. The key is to have a detailed and in-depth knowledge 
of the hydraulic operation of the existing network. 

Ideally the first stage of designing a DMA management scheme should 
include a review of the infrastructure supplying the network. The design of 
DMA schemes is very specific to individual networks’ hydraulic and water 
quality conditions and regulations. Typically the design would commence 
from the trunk mains and extend towards the distribution network. The 
objective is to separate as much as possible the DMAs from the trunk 
system, thus improving the control of the former without affecting the 
flexibility of the latter. Consequently a key element of this initial review will 
be to determine local practice or legal requirements regarding flexibility of 
supply such as satisfying fire fighting capacity etc. 

A typical layout is shown in Figure 6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Typical DMA configuration 
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In large and complex networks, DMA management should be introduced as 
part of an overall plan to monitor the flow from the main sources. In such 
situations, it might be preferable to divide the network first into larger 
sectors to identify the leakiest parts of the network. These sectors can then 
be prioritised for the creation of DMAs. This initial plan needs careful 
consideration to determine the boundary, as this initial design will be crucial 
to the overall success of the project and its long-term efficiency. In fact, 
where possible, natural boundaries should be used (rivers, streams and 
railway lines etc.) to limit the number of valves to be closed. However in a 
complex network, particularly where the existing pressures are low, it is 
advisable to use a calibrated hydraulic network model to identify the 
hydraulic balance points. Small urban and rural networks tend to lend 
themselves more easily into DMAs, thus eliminating the need for sectors. 

Pressure control is now recognised as a key feature of leakage 
management and where possible should be incorporated into the 
reconfiguration of the system during the design of the DMA scheme for 
three main reasons: 

• Reduce the existing leakage level; 

• Reduce the risk of new leaks occurring when the existing leaks have 
been repaired. 

• Prolong the useful life of the network 

Pressure control has been successfully implemented in networks having 
very low pressures (less than 15m). The design requires very detailed 
hydraulic analysis, often with mathematical simulation models, and high 
quality pressure reducing valves which have low head losses at peak flows 
and excellent control at low flows.  

+("� 
 � ��� � �� ��4 � � �� ���
For large distribution networks, the initial planning stage should divide the 
distribution system into suitably sized sectors, using a large-scale 
distribution mains map, which includes ground contours to draw provisional 
boundaries. This step utilises local knowledge of the network, available 
hydraulic data (pressure and flow), existing boundaries, natural features 
such as railways rivers major roads and the topography of the city, so that 
as part of the process the area is split into potential large pressure zones 
where appropriate. In the more complex networks it is advisable to use a 
mathematical hydraulic network model to allow the hydraulic balance points 
to be identified. In this way, it will be possible to close line valves to create 
a permanent boundary without affecting the operation of the existing 
network.  

Note: it is not important that the area is split into equal sectors as existing 
infrastructure and topography will determine the most beneficial approach. 

If possible these sectors should not include the trunk mains so that the 
flexibility of the supply system is maintained. Ideally the sectors should be 
established with the closure of valves at the boundaries or physical 
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disconnections of pipes across the boundary. Where it is not possible to 
create such a boundary, meters can be installed, to measure imports and 
exports. The design of the sectors can be optimised by using a 
mathematical simulation model. In this way it will also be possible to identify 
parts of the network that are oversized or redundant which will require 
evaluation to ensure they do not cause water quality problems. In many 
instances, these mains were effectively oversized or redundant also in the 
existing system, but were not previously identified. Over sizing of mains 
often results from a change in development plans, previous lack of 
hydraulic analysis or as a result of the reconfiguration of the network. 

The process of designing the sectors is key to the overall success of the 
DMA management scheme. The subsequent division of the sectors into 
DMAs is much easier when the configuration of the sector has been 
optimised. It cannot be over emphasised how important this first stage is 
and it should be subject to review by experienced engineers to ensure the 
best configuration is achieved within the financial constraints.  

An additional advantage of establishing sectors is that work can progress on 
establishing DMAs within individual sectors at varying timescales and design 
teams can be allocated to different sectors. The early establishment of these 
sectors will also enable an initial estimate of leakage, which could significantly 
affect the program of design of the DMAs so that activity can be focused in 
the leakiest sectors. In some instances the establishment of the sectors will 
be beneficial for retargeting leakage location activities and this could be part 
of an overall program of introducing additional leakage activities. 

Ideally, water storage (service reservoirs and towers etc) should be outside 
the sectors. Alternatively if this cannot be achieved, inlets and outlets of 
storage reservoirs can be metered and included in any flow analysis but again 
at the detriment to the overall accuracy of the measurement. 
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The technique of leakage monitoring requires the installation of flow meters 
at strategic points throughout the distribution system, each meter recording 
flows into a discrete area, which has a defined and permanent boundary. 
Such an area is called a District Meter Area (DMA).  

The design of a leakage monitoring system has two aims: 

• To divide the distribution network into a number of DMAs, so that 
the flows into each district can be regularly monitored, enabling the 
presence of unreported bursts to be identified and leakage to be 
calculated with confidence. 

• To manage pressure in each or a group of DMAs so that the 
network is operated at the optimum level of pressure. 

Depending on the characteristics of the network, a DMA will be: 

• Supplied via single main (preferable) or multiple feeds; 

• A discrete area (i.e. no flow into adjacent DMAs);  

• An area that cascades into an adjacent DMA (to be avoided if at all 
possible). 

An effective permanent leakage control system will: 

• Maximise the accuracy of measurement of leakage within DMAs; 

• Facilitate the location of the leaks; 

• Limit of if possible eliminate the number of closed valves; 

• Minimise the changes to the hydraulic and qualitative operation of the 
existing network. 
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The factors that should be taken into account when designing a DMA are:  

• The required economic level of leakage; 

• Size (geographical area and number customer connections); 

• Housing type i.e. blocks of flats or single family occupancy housing; 

• Variation in ground level; 

• Water quality considerations; 
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• Pressure requirements; 

• Fire fighting capacity; 

• Target final leakage level; 

• Number of valves to be closed; 

• Number of meters used to monitor flow ideally minimised; 

• Large metered customers should have their meters measured as 
export meters from the DMA. 

• Infrastructure condition 

The over-riding factor is to successfully create the DMAs without 
significantly affecting the quality of service to the customers. This is 
particularly important in networks where the existing operating pressures 
are already low. It should also be remembered that the reduction in leakage 
that the creation of DMAs allows will also tend to increase the operational 
pressures within the network.  

A DMA boundary should not necessarily be considered definitive. With the 
change in operating conditions, it might be necessary to modify the 
boundary. For this reason it is usually better to create a boundary by 
closing valves rather than cutting the pipes. However care must be taken to 
ensure that these valves are leak tight and that their accidental opening is 
avoided. 

 

,()� 
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The size of DMAs has an impact on the cost of creating them: the smaller 
the DMAs, the higher the cost. This is because more valves and flow 
meters will be required. The maintenance at a later date will also tend be 
more costly. However the benefits of smaller DMAs are: 

• New leaks will be identified earlier reducing "awareness time"; 

• Smaller leaks can be identified against the “noise” of night use; 

• The location times can be reduced because it is quicker to carry out 
detection in smaller DMAs to find a given leak than a large one; 

• Detection costs will be reduced because less of the network needs to be 
searched to find a given number of leaks. 

• This all allows a lower leakage level to be maintained. 

In practice, there will always be a significant variation in size of DMA due to 
the layout of the existing infrastructure and the need to optimise pressure 
management. In the UK, DMAs are often sized by the number of properties, 
where typically a property is supplied by a single customer connection. 
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Consequently, DMAs in urban areas vary between 500 and 3000 
properties.  

It has been found that if a DMA is larger than 5000 properties, it becomes 
difficult to discriminate small bursts (e.g. service pipe bursts) from night flow 
data, and burst location takes longer. However, large DMAs can be divided 
into smaller temporary DMAs by closing additional valves so that each sub-
area is fed in turn through the DMA meter for leak detection activities. In 
this case, any extra valves required should be taken into account at the 
DMA design stage. 

In networks with very poor infrastructure condition the high burst frequency 
(and the pressure increases after repairs that lead to further bursts) make it 
worthwhile having very small DMAs: less than 500 customer connections. 

Alternatively DMAs can be sized by km of pipe work, particularly in systems 
that contain blocks of flats which tend to have a very low connection 
density. This has the additional advantage of being easily referenced to the 
leakage location activity which is normally quantified in terms of the length 
of mains. 

In general, hydraulic, practical and economic factors will ultimately 
determine the size of the DMAs.  

Water utilities often have there own criteria for determining the appropriate 
method of economic leakage control. Where this includes DMA 
management, the analysis will determine the type of active leakage control 
policy, size of DMAs, targets and staffing policy. For instance, the UK water 
industry has undertaken considerable work on the economics of leakage, 
which is explained in Managing Leakage Report C - Setting Economic 
Leakage Targets and .  

,(+� 6  �� ��7 �  ��� �� � � ��� � � ��� � ��
Creating a DMA involves permanently closing boundary valves. This 
creates more dead-ends than would normally be found in a fully open 
system. Consequently complaints of poor water quality may occur 
depending on local water quality. The greater the number of closed valves 
in a DMA, the higher is the likelihood of this happening, particularly if the 
closed valve is not situated at the existing hydraulic balance point. The 
problem can be partly alleviated by a flushing programme, starting at the 
design stage and at regular intervals afterwards, although great care is 
need to ensure that this does not aggravate the situation. Some water 
utilities have a boundary valve configuration which consists of two valves, 
either side of a fire hydrant to alleviate this problem. It should be 
remembered though, that the creation of DMAs only aggravates an existing 
water quality problem, which would eventually have become evident when 
the network configuration was modified for reasons not connected to 
leakage control. 
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The planning stage is the process of dividing each sector into suitably sized 
DMAs. This is most common in large inter-connected networks. In small 
distribution systems, it is unlikely that this stage will be necessary.  

Outline planning is the first step, using small-scale distribution mains maps 
to draw provisional boundaries. The map should identify:  

• any buildings that require water supplied at a pressure above the norm 
for the area; 

• any large or special customer; 

• ground level contours; 

This step utilises local knowledge of the network and available hydraulic 
data (pressure and flow) to identify potential trouble spots, which could be 
made worse by closing the boundary valves. Where the DMA boundary 
crosses a main, a valve is closed (or a meter is installed). This allows the 
net night flow to be calculated. 

In large inter-connected networks, especially ones suffering existing low 
pressure or water quality problems, it is preferable to use a calibrated 
hydraulic network model. In this way it is possible to identify many of the 
anomalies in the network (unknown closed valves, connectivity errors on 
the mains records) which if not eliminated are likely to cause supply 
problems to the customers when the DMAs are created.  

A boundary should be designed not only to fit the broad design criteria for 
the DMA, but also to cross as few mains as possible. The boundary should 
follow the "line of least resistance" by using natural geographic and 
hydraulic boundaries. The aim is clearly to minimise the cost of installation, 
operation and maintenance. The model is particularly useful to identify 
existing hydraulic balance points where a DMA boundary valve can be 
closed without modifying the existing operation of the network, thus limiting 
pressure or water quality problems. The detailed hydraulic understanding 
that a hydraulic network model provides also allows selective 
reinforcements to be designed which in some cases are necessary to 
enable the optimum single DMA supply to be realised, particularly in cases 
where fire-fighting requirements are very restrictive. In fact, experience has 
shown that even in the most complex networks where the mains records 
are of poor quality, it is possible to successfully create a single feed DMA – 
provided that a hydraulic network model has been used. Where water 
quality is considered to be a problem, flushing points should be included in 
the design. Consideration should be given to the ease of operation of these 
flushing points by local staff, particularly with regard to traffic. DMA 
boundary valves should be readily identifiable. 

Ideally trunk mains should be excluded from DMAs to avoid costly meter 
installations, to improve the accuracy of flow information and to maintain 
the flexibility of supply. Where a large proportion of the flow entering a DMA 
passes out again to other parts of the system, the accuracy of 
measurement is significantly reduced. 
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Clearly, the actual boundaries will have to be a compromise if the DMAs 
are to be constructed with a minimum of new infrastructure changes. For 
instance, an existing valve might not be available exactly at the hydraulic 
balance point and so the next nearest will have to be used. In some 
instances it may be economic to provide link mains, particular if these 
would allow pressure management to be achieved. 

Exact total infrastructure information is not necessary at the design stage, 
although the location of important industrial consumers should be identified 
and allowed for. Initially, sufficient accuracy is needed to confirm whether 
the DMA fits within the broad design criteria. Where a network model is 
available, estimated flow data will have already been determined. If not, the 
best source of customer information is from GIS, billing records, post-code 
information, or a street-by-street survey. 

The design of the meter location will require a large-scale map, so that 
details of the line of the main, and the position of valves, bends, 
connections, other utility information and obstructions are clearly visible. 
Valves and bends can cause inaccuracies to the flow readings in some 
meters. It is important to site such meters on a straight length of main, as 
free from obstructions (particularly bends) as possible. Manufacturers' 
recommendations on the number of pipe diameters between the meter and 
upstream/downstream obstructions should be followed. 

Consideration should also be given to how the data will be obtained from 
the meter. In many instances small kiosks or pits can be located in 
convenient locations at the sides of the road where telemetry connections 
can be installed or portable hand held computers can download the data. 

The key to good DMA design is 

• Minimum variation in ground level across the DMA; 

• Easily identified boundaries that are robust; 

• Size appropriate to number of burst to be identified; 

• Meters correctly sized and located; 

• Involvement of all operational staff affected by network changes; 

• Limit the number of closed boundary valves; 

• Limit the number of flow meters; 

• Optimise pressure to maintain customer standards of service and to 
reduce leakage 
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After the design of the DMA boundaries, trial closure of the valves should 
be undertaken to verify their efficiency and identify those valves which need 
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to be replaced. The importance of tight boundaries should not be 
underestimated, as one inefficient valve can compromise the leakage 
estimate of two DMAs. In fact, an important reason for locating a boundary 
valve as close as possible to the natural hydraulic balance point is to limit 
the pressure drop, and hence any flow, across the valve. Once the 
efficiency of the valves has been verified, they should be closed and the 
pressure inside each DMA monitored to ensure that the operational 
pressure is as designed. Ability to cope with peak or fire fighting flows can 
be simulated by opening hydrants to check hydraulic conditions. If the 
designed pressures are not maintained, then the DMA details will need to 
be checked in detail. 

A common problem encountered in the field, is the existence of unknown 
closed or partially closed valves. If checks reveal none of the above 
problems then it is likely that there is an error in the design. The use of a 
hydraulic network model allows such problems to be identified and resolved 
at the design stage. 

Once the DMA has been created, a zero pressure test should be carried out. 
This involves closing the supply to the DMA and checking that the pressure 
drops towards zero. All boundary and divisional valves should be sounded 
to check whether the valves are tight. If faulty valves are found, these 
should be rectified and the zero pressure test repeated. 

A typical procedure for a pressure zero test is as follows: 

1 Indicate boundary valves by marking valve covers (e.g. often by 
painting the valve cover red). 

2 Arrange for the test to take place between 01.00 and 05.00. Inform 
customers with special needs (hospitals, dialysis patients etc.) 

3 Ensure staff have plans indicating the DMA boundary, boundary 
valves, and the DMA inlet valve. 

4 Set up pressure loggers or gauges at key locations throughout the 
DMA. 

5 Close the DMA inlet to isolate the DMA. 

6 Analyse the pressure data. If the pressure drops to zero then it is 
likely that the boundary is tight or at the very least, if there is an 
unknown connection, it is likely to be very small. However, if after 10 
minutes, the pressure has not dropped, a second check should be 
made by simulating a consumption (e.g. opening a fire hydrant within 
the DMA) to induce some flow, which should zero the pressure. If 
there are no unknown connections, the pressure should remain at the 
low level when the hydrant is closed. 

7 If the test fails, i.e. the pressure creeps up; it is likely that there is an 
unknown connection. An assessment of the heads (pressure + 
ground level) at each of the monitoring points will allow the area of a 
potential inlet to be identified. Further investigation is then necessary, 
possibly with additional zoning of the DMA, to identify the unknown 
inlet. It cannot be over stressed the importance of verifying the 
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tightness of the DMA boundary, as all subsequent leakage location 
activities is dependent on the accuracy of the leakage estimate. 

On completion of the test, the supply valve is reopened. The pressure is 
monitored to ensure that supply has been restored to the DMA. 

,(%� � � �� ���� �� � ��� � �
The flow meter should be capable of accurately measuring low flows whilst 
avoiding excessive head losses at peak flows. 

State of the art flow meter technology makes it possible to select a meter 
which can cope with peak daily flows and seasonal demand, and which can 
also accurately measure: 

• Night flows into a DMA; 

• Night flows into sub-divisions of a DMA;  

• The very low flows associated with step testing. 

The choice of meter size and type will depend upon: 

• Size of main; 

• Flow range;  

• Head loss at peak flows; 

• Reverse flow requirements; 

• Accuracy and repeatability; 

• Data communication requirements;  

• Cost of the meter; 

• Cost of ownership and maintenance requirements; 

• Water utility preference. 

The flow range and accuracy requirements of the meter will also depend on 
the mode of use. Traditionally, DMAs have been used for leakage 
monitoring which required good repeatability rather than absolute accuracy. 
This is particularly the case where the initial leakage level is very high. As 
the use of DMAs to quantify total leakage data, historic flow trends and 
establish customer use trends has increased, so has the accuracy required 
of individual meters.  

Electro-magnetic full-bore meters are most suited to DMA application as 
they posses the required low flow accuracy without affecting significantly 
the head losses at peak flows. However they tend to be expensive and in 
most cases require external power supply. Ultrasonic meters tend to have 
the same disadvantages but have lower installation costs as there is no 
need to cut the pipe. In smaller inlet mains, a helix-type meter will be more 
than satisfactory provided that a high-resolution pulse unit is used for data 
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logging (preferably 1 pulse / 10 l). Insertion meters, though less accurate 
than full-bore meters, can be useful, particularly as a temporary solution 
when the initial leakage level is very high.  

The easiest way to maximise accuracy is to reduce the number of inlets. 
Measurement based on multiple inlets and outlets should be avoided if 
possible as they can give rise to misleading leakage levels due to the 
compound errors of the meters.  

Meter sizing should take account head loss, seasonal fluctuation and 
demand changes. Where reverse flow has been encountered or is 
considered likely, a meter with such a capability will need to be specified. 
Comparison of previous years' records will give an indication of seasonal 
differentials. Allowance should also be made for the lower flows likely after 
bursts have been found and repaired. 

If a network model has been applied for the design of the DMA, this should 
be used to predict the flow range of the meter, taking into account seasonal 
demands and future maximum and minimum flows. If a model is not 
available, a temporary insertion meter can be used to estimate the flow 
range, with some adjustment for seasonal and/or exceptional flows. 

Alternatively, the flow range can be estimated from demand calculations, 
using: 

• Customer metering details; 

• Number of customers; 

• Estimates of non-household use (industrial demand);  

• Estimates of exceptional night use > 500 l/hour (for maximum flows); 

• Estimates of night use (for minimum flows); 

• Estimates of leakage (for minimum flows after leak repair); 

• Fire fighting flows. 

Formulas have been developed using the Burst and Background Estimates 
(BABE) leakage concept to determine long-term minimum leakage levels 
that can be anticipated in the DMA. (see Appendix E) 
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Following the installation of all boundary meters and establishing the 
permanent boundary, it is necessary to "prove" the district to ensure that: 

• All meters are working correctly; 

• There are no operational problems; 

• All internal valves are at the correct status;  

• Determine the average DMA pressure. 

The DMA meter(s) and internal pressures should be logged for a period a 
few days and the resulting data analysed to determine leakage levels. 

1("� �  �  � � � � � ��
Once a DMA has been proved, all subsequent work relates to its 
management, which is involves the initial setting up of the procedures and 
the subsequent routine operation. 

Initial setting up work comprises "housekeeping" issues such as: 

• Set up records and recording procedures; 

• Set up a monitoring & data collection procedure; 

• Inform appropriate staff of valving changes; 

• Determine order of priority for leakage location activities; 

• Monitor customer complaints, especially for discolouration, low 
pressure and no-water. 

The routine operation on the other hand involves the following activities: 

• That DMA boundary valves are clearly marked for identification by all 
staff; 

• That the status of the closed valves is regularly checked; 

• If the boundary has to be opened in exceptional circumstances, that the 
corresponding flow data is not considered for any leakage evaluation; 

• That flows are monitored for consistency. The daily pattern of flows into 
each DMA should follow the daily pattern of consumption within the 
DMA. If not, it probably indicates problems with boundary valves or 
meters. This should be used to initiate investigation. 

• When estimates of night use and daily customer consumption are 
available, a simple check can be made to ensure that the losses 
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measured from night flows are consistent with the losses calculated by 
subtracting the total daily consumption from the net daily flow into the 
DMA. If not, it probably indicates problems with meters or boundary 
valves and should be investigated. 
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In its simplest form, leakage in a DMA is the difference between the inflow 
and the consumption. When the DMA has been established, the inflow is 
measured directly by the meter(s). Quantifying customer consumption on 
the other hand is not so direct. Even if all the customers are metered, the 
data is subject to many factors that are not easily quantifiable such as 
meter errors and illegal use.  

In networks where there is continuous supply, many of these problems are 
overcome by quantifying the leakage at times of minimum consumption, 
which usually occurs at night. As night consumption is usually very small, it 
follows that in all but the leak-free networks, most of the night flow will be 
due to leakage allowing an almost direct measurement. 

Continuous supply is not however a prerequisite of DMA management. 
Even in networks having intermittent flows where the supply is suspended 
at night, it is still possible to quantify and manage the leakage in the DMAs, 
just that the results will tend to be less accurate. However, the importance 
of accuracy tends to increase inversely with the leakage level. So as 
intermittent supply is usually a consequence of high leakage, accuracy is 
therefore less important. The key is to quantify as realistically as possible 
the real consumption during the period of supply. It is necessary therefore 
to undertake field monitoring to determine the average consumption. In this 
way, the leakiest DMAs can be targeted first to reduce the leakage level, 
which might be enough to even eliminate the need to suspend supply. At 
that point a more precise approach based on night flows can be adopted. 

1(+� � �  �� ��� � �� �� �� � � �� �� � ��; �� � �
The minimum night flow is the lowest flow into a DMA on each night. In 
most cases this flow will mostly consist of leakage, with relatively small 
amounts of customer consumption. In simple DMAs, this night flow will be 
from a single meter. However, in some cases, the minimum night flow will 
be the minimum of the aggregation of several meters (not the aggregation 
of the minimum flow of each of the meters). 

The night flow should be the average over a set time. A period of one hour 
is useful and is widely used.  

Typically, data loggers are set to measure flows and the minimum 1 hour 
value should be the lowest rolling 1 hour average of these values. The 
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minimum 1-hour flow is only slightly dependent on the logging interval and 
this effect can usually be ignored.  

1(,� '  �� � � ��� � ��  �� ���  �  � � �.  �� � ���� � �� �� �� � � �� �� � ����� � ��
The minimum night flow approach to quantifying leakage is usually the 
most accurate, as it is an almost direct measurement of leakage. However 
care is required when extrapolating the night leakage value into an average 
leakage value because of the effect of pressure.  

At night the pressure is usually at its greatest and then varies throughout 
the day as network flow induces hydraulic losses through the network. 
Therefore extrapolating the night leakage value over 24 hours will tend to 
overestimate daily leakage. To take account of this fact, leakage estimates 
based on night flow measurements are multiplied by a Night-Day Factor 
(NDF). In gravity fed systems values of 18 to 24 are typical. A method of 
assessing the NDF is given in Appendix A. 

1(1� ' � ��� � � ��� �� � ��: �� �� ����  �� ��
Where the customer consumption is metered, it is possible to apply a 
standard night factor to the historical consumption to estimate the legitimate 
night use. Where such factors are not available or they are not considered 
reliable, it is advisable to undertake the monitoring of a sample of 
properties by logging the consumption at 30 minute intervals with a high 
accuracy meter installed in series with the existing meter for a period of at 
least 7 days. Such a test will also allow the meter error to be assessed by 
comparing the real quantity consumed by the test meter with the apparent 
consumption measured by the customer meter to yield the effective meter 
error. The same approach can also be applied to networks having 
intermittent supplies or where customers have storage tanks. Alternatively, 
a sample of meters can be read manually at regular intervals throughout 
the day to derive typical consumption profiles. 

Significant work has been done in the UK on night use, which has been 
published in Managing Leakage Reports E, & F and UKWIR Household 
Night Consumption and Estimating Legitimate Non-household Night Use 
reports. An outline is given in Appendix D while the latest work published by 
UKWIR is detailed on the web site for UK research www.ukwir.co.uk. 
Accurate night use allowances are important within the UK because 
individual water companies are required to report leakage (using night 
flows) to their regulator. Much of this work derives however from the fact 
that few UK customers are metered and where apartments are not very 
common.  

It is recommended that customer night use be divided into at least three 
demand categories, in relation to the type of consumption in the network. 
These are: 

• Domestic properties;  
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• Non domestic such as commercial properties and schools which 
consume water mainly during the day-time; 

• Special consumers which can range from industrial and agricultural 
consumers to hospitals and clinics. 

The assignment of the properties to DMAs can be carried out in one of two 
ways. The most precise and appropriate method is to use the addresses in 
the billing records. If not available, and the leakage level is very high, then it 
is sufficient to estimate the percentage of properties in each DMA and 
assign a typical consumption. Every effort should be made to quantify 
accurately the customer consumption to increase the confidence in the 
derived leakage value. 

When the leakage level has been brought under control, it becomes 
increasingly difficult to further reduce the leakage level. In such 
circumstances, it is necessary to then assess in more detail each 
component of leakage. With this aim, the burst and background estimates 
(BABE) component approach to leakage was developed in the UK and 
when correctly applied, it can be used to underpin the analysis of the 
minimum night flow with confidence. Historically many methods have been 
used to compare and target DMAs. Unfortunately few allow for the 
comparison of DMAs of varying size, pressure and mix of infrastructure. 
Not only does the BABE approach overcome these difficulties, but it also 
allows the quantity of unavoidable leakage to be quantified to yield the 
burst or excess losses which can realistically be recovered to be 
determined. 

Analysis of excess leakage in DMA
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Excess losses in a DMA are caused by the presence of unreported bursts. 
To calculate the excess losses the other components of the minimum night 
flow must be measured or estimated.  

Whilst the BABE approach can appear data hungry, the initial application 
can be simplified by using initial default values until more accurate data is 
gathered. A detailed description of the BABE approach is included in 
Appendix E 

Data to establish customer night use comprises the following: 

• Population 

• Number of households (i.e. individual flats in buildings & houses) 

• Number of non households (industrial) properties  

• Details of internal plumbing practise 

• Identification of non households estimated to have night flow > 0.5 
m3/hr classed as Exceptional Night Users 

• Further details of non households industrial properties such as type of 
user and average daily demand 

Data to establish background leakage in DMA is the following. 

• Length of mains 

• Number of property connections 

• Average length of private connection pipe 

• Average zone night pressure AZNP 

• How customers are connected to the distribution system 

1(%� � �� � ��� �� �� � � �� �� � ��� � � ����  . � ���� � ����  � ����� � � � �
In networks subjected to intermittent supply, the customers often have their 
own tanks to store enough water to cover their daily use. This will 
significantly impact the accurate quantification of leakage unless a 
monitoring exercise is undertaken to quantify the consumption. Tanks are 
also used in networks having a 24 hour supply, which are subjected to low 
operating pressures. This can have an impact on the rate of filling, 
particularly at night. Again in such cases, the best solution is to undertake 
the monitoring of a representative sample, so that the correct demand 
profile can be applied to the leakage calculation.  

It should be noted that the creation of DMAs, in addition to providing the 
ideal instrument to reduce leakage, is also useful as a demand 
management tool, to distribute the available water to all parts of the 
networks. This is achieved by installing a pressure reducing valve on the 
DMA inlet and regulating the outlet pressure with a timer.  
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Experience has shown, that in most cases, intermittent or low pressure 
problems are usually caused by very high leakage in the network. A 
permanent leakage and pressure control system is therefore the first step 
to resolving the problem. 

1(2� 
  � �� � �����  ��� � ��� ��� �� �� � � �� �� � ����� � �
When flow data is received, which could lead to the DMA being targeted for 
leak detection, several checks should be undertaken before assigning leak 
detection crews to search for unreported bursts. 

• Has the increase in flow occurred on successive days or just a single 
day? It is good practice to verify that the increase occurs over more 
than one day before acting on the change. 

• Is it possible that the increase in consumption is due to a change in the 
consumption of a large consumer? For large consumers it is worthwhile 
having a loggable meter to verify consumption patters. 

• Is it possible that there has been a reduction in the night consumption? 
This could be relevant if the DMA has only just been set up. 

• Is it possible that the change is due to maintenance works? Any such 
works should therefore be communicated to the leakage control team. 

• Has the status of a boundary valve been changed? Sudden changes in 
flow are often caused by DMA boundary valves being opened or 
closed. Any changes should be communicated to the leakage control 
team. 

• Are all the meters working correctly? The failure of one meter, 
particularly in inter-connected DMAs, could change the leakage value 
in more than one DMA. 

• Is it possible that hydrants have been flushed? This should register as 
a sudden peak in the flow data and should not be included in the 
leakage evaluation. 
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After several DMAs have been set up, leakage levels can be determined on 
a regular basis. An order of priority will then be defined to select the worst 
DMA for leak detection. This chapter sets out the methods available for 
doing this. 

%(	� 4 � ���� � ��  �� � ��� � � �4 � ���� � �* � �� � �� � �< � . � ���
The details of setting targets and resource levels for a whole distribution 
system are outside the scope of these Guidance Notes. However this 
needs to be discussed briefly to explain how target setting leads into the 
selection of DMAs for detection and repair.  

%(	(	� 
 � � �� �� � ��� � �C � D� � ��. � ���

There are several different objectives for undertaking a leakage control 
programme in a distribution system. These could include: 

• Improving the duration, reliability and quality of supply; 

• Preventing depletion of a water resource; 

• Saving expenditure on treatment and pumping; 

• Meeting regulatory targets for raw-water abstraction and leakage. 

The specific objectives will be defined in the strategic plan of the water 
company. These will then form the basis for setting up and subsequently 
selecting the DMAs for leak location. The approach adopted for meeting 
leakage targets is likely to be based on a combination of the following four 
actions:  

• Active Leakage Control;  

• Pressure Management; 

• Infrastructure Management; 

• Repair Management.  

It is important to remember that, irrespective of the approach, the objective 
is not just to lower the existing leakage level, but also to maintain the lower 
leakage level in the future.  

The assessment of the target leakage reduction from Active Leakage 
Control should go together with an assessment of staff resources required 
for leak detection and for leakage repair. Depending on the local situation 
the initial staffing requirement to set up the control system and for initial 
leak detection could be much higher than the requirement for maintenance 
of the leakage level once a target is achieved.  
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The objective is to select those DMAs where the benefit attained 
outweighs the extra effort required to detect and repair the leaks.  

This implies a cost / benefit analysis (described in detail in Appendix C) 
where four key elements are required: 

• Detection and additional repair costs; 

• The reduction in leakage level as a result of the detection and repair? 

• The value of the savings1  

• Leakage return frequency 2 

There are practical problems associated with this approach: 

• There is need for an analysis of historical data in order to make a 
reasonable estimate, which is not possible when the DMAs have just 
been set up for the first time; 

• It can be difficult to calculate the value of the savings;  

• The optimum application of this approach requires flexibility in the 
availability of the detection teams, which is not always possible. 

If all the data is not available, it is necessary to resort to a more simplified 
approach, which is based on the actual data available, but which still takes 
into consideration the difference in size between DMAs.  

%("(	� � � � �4 �� � �� ���� � � ��  � � ��

The simplest approach for networks with continuous supply is to represent 
the excess leakage (defined in Chapter 6 above) in terms of excess 
leakage per customer connection. 

                                                

1 The value of savings depends on the circumstances in the DMA. Each of the four objectives in 
Section 7.1.1 should place a different marginal value on savings in DMAs. So, for example, the 
value of savings in a DMA with pumped supply from a source with high running costs where 
some customers get intermittent supply due to losses within the DMA would normally be higher 
than the value of savings in a DMA continuously fed by gravity from a source with low running 
costs. The value of improving duration, reliability and quality of supply will normally outweigh the 
other objectives. 

2 Initially active leakage control (ALC) will reduce the number of leaks in a DMA. When ALC 
stops in the DMA the number and size of leaks will slowly to rise, until, without further ALC, the 
leakage may return to its original level. If the number and flow rate of leaks rises quickly then 
the expenditure on ALC will have to be repeated. On the other hand if the leaks increase slowly, 
the expenditure may not have to repeated for many years. So it is more cost-effective to carry 
out ALC on a high leakage DMA with low rate of rise than the same work on a high leakage 
DMA with a high rate of rise. 
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The DMAs should be ranked from highest excess leakage per customer 
connection to lowest excess leakage per customer connection. The DMAs 
with the highest excess leakage per customer connection should be 
selected for leak detection. This reflects the fact that most of the cost of 
detection is associated with customer connections in urban areas 

However if the connection density is low (less than one connection per 100 
metres of main)(in for example very rural areas or where a few connections 
serve a large number of individual apartments), then it may be more 
suitable to rank by excess leakage per km of main. This reflects the fact 
that at low connection densities the cost of detection is more closely 
associated with the length of main.  

%("("� -� �� �� ���� � ���� � � � �

Continuous supply should be a priority for any water company as the 
effects of closing and reopening pressurised systems are serious both from 
a structural and qualitative point of view. Therefore, if parts of the network 
suffer from intermittent supply, leak detection work should concentrate on 
those DMAs where a reduction in leakage would make supply more 
continuous.  However care is required in linking the cause of the 
intermittent supply just to the leakage in the DMAs where supply problems 
are encountered. In fact, experience has shown that intermittent supply is 
invariably caused by excessive leakage in the network upstream of the 
problem area. In such cases the priority should be given to the DMAs in 
these areas.  

Often the leakage levels in areas suffering intermittent supply are very low. 
This should not necessarily be interpreted as signifying an almost leak-free 
network, because it is likely that the operating pressures are also low. It is 
possible therefore that once a continuous supply is obtained, then the 
leakage level will rise. For this reason pressure control should be 
considered also in DMAs where the operating pressures are already low. In 
some cases, the use of intelligent pressure control has been extended to 
managing intermittent supply problems, where the pressure to some DMAs 
is reduced to allow the problematic DMAs to be supplied. The use of a 
hydraulic network model will greatly assist the analysis of the cause and the 
definition of the solution to intermittent supply problems.  

%("()� � � � �� � ��  ��� � ��  ��� � �� �� � � � ��� ���  �� ��  ��� . �� � �� � � �� � � � ���
��  �  � � �� � ��� � ��� � � ��� � � � � � ��� � �

If the network has the following characteristics: 

• The marginal savings can be expressed in monetary terms3 

• The marginal savings differ significantly between DMAs; 
                                                
3 The marginal savings means the value of saving a single cubic meter of leakage. The 
monetary value of this is very dependent on particular circumstances.  
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• The rate of rise of leakage4 in each DMA is either similar or unknown. 

Then the DMAs can be prioritised by the ratio (R) of (the product of 
marginal savings (i.e. value saved per cubic metre saved) and the excess 
leakage) to customer connections.  

�
�
�

�
�
�
�

�
=

)sconnectioncustomerofNo(
)day/m(lossesexcess)mper(savingsofvalueinalargM

R
3

x
3

 

The DMAs with the highest ratio should be selected first. 
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A number of other methods are used for prioritising detection or providing 
supporting information. These methods quantifying the excess leakage and 
convert this leakage into a points system or an estimate of the number of 
bursts that can potentially be located.  

Where the excess leakage is expressed as a number of bursts this 
potentially has the added advantage that an estimate of the number of 
excavations required to repair the bursts is also available, to provide an 
estimate of the resources required to carry out the repairs once the bursts 
are located. 

Typically the number of bursts is expressed as the number of equivalent 
service pipe bursts, where an equivalent service pipe burst (ESPB) is 
estimated @ 1.6 m3/hr at 50 metres head with this volume being pressure 
corrected for the average pressure in the particular DMA. If initially the level 
of leakage or the network build is resulting in an average bursts of a higher 
volume being located then a system based on equivalent mains pipe burst 
could be adopted (EMPB). A value of 5.75 m3/hr at 50 metres head has 
been used as an initial value for mains diameter 80 to 150 mm until local 
information is available. 

With experience the leakage inspector can analyse the latest minimum 
night flow, estimate the ESPBs to be located and review the previous night 
flows to establish broadly how the night flow has increased and make an 
initial judgement that in the particular DMA he is looking for say 3 ESPBs as 
the night flow has approximately risen in three steps or is looking for a 
mains burst as the night flow has risen in one step. Software can utilised to 
provide part of the analysis.   

The flow rate for mains bursts was based on information collected in the 
early 1990s in the UK. More recent experience has indicated that 0.6 m3/hr 
is a more typical service pipe burst flow rate.  

                                                

4 Rate of Rise of Leakage is the rate at which leakage increases with time between periods of 
active leakage control. This can be measured by analysis of long-term flow and repair records. It 
is usually expressed in litres per connection per day per year.  
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Many water undertakings have successfully applied simple approximations 
for many years without the need to introduce the cost / benefit approach.  

However, for networks with intermittent supply, when the continuity of 
supply has been achieved, then it is necessary to consider the adoption of 
a more sophisticated approach.  

Customer night use assessment; background losses assessments; ALC 
cost and effect assessment will all improve with time. If so, these 
assessments should be incorporated into the prioritisation method.  

%()� -� �� �. � � ��� � ��� . � ���
The points (leakage levels) at which an intervention (i.e. leak detection 
work) should commence, are called intervention levels.  

Typically, the intervention level will allow a number of bursts to occur and 
the exit level will be the point at which no more bursts can be located and 
only background leakage remains. Initially, where leakage is excessive in 
the whole network, the exit level could include a number of potentially 
locatable bursts until the overall level of leakage has been reduced.  

The intervention levels will be based on the approach adopted for ranking 
the DMAs. If the intervention levels are set as a flow, then the size of the 
DMA would influence the lowest level of intervention that can practically be 
set. Where a detailed economic appraisal of the economic level of leakage 
has been undertaken, this can be translated into an intervention and exit 
level in DMAs.  
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Figure 8 Typical intervention levels 
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After detection and repair resource requirements have been set, and a 
method for deciding on which DMA to work on has been decided, 
prioritisation should be carried out on a cycle with a duration of around one 
week.  

Regular reviews of the prioritisation methods should also be carried out, 
along with assessments of which DMAs are responding to the detection 
and repair cycle and which ones are “problem DMAs” which need further 
investigation. 

DMA targeting methods will develop as the staff become more 
knowledgeable. In time, as actual ALC costs are established, it will be 
possible to review the methodology by comparing the actual costs against 
the savings achieved. As a result targets and resourcing levels should be 
revised periodically 

The whole process is summarised in the flow chart below. 
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Figure 9 Flow chart for prioritising intervention 
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A good prioritising system will provide the leakage practitioner with the data 
required to optimise the leakage location activity. The priority system 
should be capable of evolving as more detailed information is captured and 
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leakage levels are reduced, while providing the practitioner with an easily 
understood ranking system. 
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Once a DMA has been prioritised for action and the leaks have been 
located and repaired, it is essential to assess the results. In some cases the 
recovery of the leakage might be much less than anticipated or that the 
results are short-lasting. Such DMAs are termed problematic DMAs and 
require a slightly different approach which is covered in the following 
sections. 

2(	� = �� � ���  �  � � ���� � ���  � ��
There are many possible causes of apparently high leakage levels where 
only a limited number of small leaks can be located. If the DMA has been 
properly verified and the boundary has been shown to be tight, then in 
essence there are two main components that could cause the problem: 

• Error in the quantification of the leakage level; 

• Error in the leakage location activity. 

The first task is verify the leakage level. Have the DMA boundaries been 
properly checked for tightness? Is it possible for instance that there is 
unknown or illegal consumption? Does the excessive leakage level really 
warrant further investigation? Some of the recommended actions are listed 
in Table 1 below.  

 



 

!  � � �)8


 � � �� � ��  � � � �� � �� ��

� "	#$ "#$ %�"&$ %�%

�

Table 1: Actions to ensure that apparent leakage is real 

Action Comments 

1. Check internal 
consistency of 
metering results 

Check that the flows registered by the meter, and the flows 
used for leak calculation are the same. A simple way to do this 
would be to read the meter at two times, say, 24 hours apart. 
The cumulative flow through the meter should then be 
compared to the total flow over the same period using the 
system by which DMA leakage is calculated (e.g. data logger).  
If these values disagree, the system by which data gets from 
the meter to the leakage calculation should be checked for an 
incorrect pulse unit multiplier etc. 

The method by which meter readings are added to give a total 
flow into the DMA should also be checked. 

2. Check basic 
DMA data 

The basic values used to calculate the leakage level should be 
checked. This includes all of the customer meter readings and 
allowances for household and non-household losses, the 
numbers of households and non-households, the exceptional 
users, and the data required for the background losses 
calculation.  

3. Check leakage 
calculation 

Using the re-checked DMA data, and the re-checked night flow 
information, the excess night flow calculation should be re-
performed independently of the normal leakage calculation 
software or system. 

4. Check on 
metering errors 

If the DMA has several metered imports and exports then a 
calculation of the total metering error would be useful. If the 
total metering error, using a ± 5 % error, would account for the 
excess leakage, then consideration should be given to either: 
redesign of the DMA to reduce the number of meters or; 
replacement of those meters where fairly small percent errors 
would give large errors in reported leakage.    

5. Check 
boundary 
valves 

Boundary valves should be checked in the same way as they 
would be checked when setting up a new DMA. 

6. Perform 
pressure zero 
test 

A pressure zero test should be performed to ensure that no 
unknown connections exist that breach the DMA boundary.  

7. Short interval 
flow logging  

Use a short-interval flow logging technique to calculate the 
time-variable night use.  This may show that night use is higher 
(or lower) than assumed 
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Action Comments 

8. Verify meter 
accuracy 

Some of the import or export meters to a DMA may have flows 
that are verifiable indirectly using other meters or combinations 
of meters. However, there may be others where no verification 
is possible. In this case, some verification of flows should be 
carried out.  

Verification could consist of replacement of the meter. After the 
meter is replaced, the new meter results should be used for a 
new leakage calculation. Another method may be the use of an 
insertion meter downstream of the existing meter, and 
comparing the flows recorded.  

Night-flows could be checked to ensure that no mechanical 
meters stall at minimum flow. If a stalling meter is an export, 
this could lead to apparent high leakage.  

The installation could be checked against manufacturers’ 
recommendations. This includes the required length of straight 
pipe up and downstream, and situations where jetting could 
occur. The installation could also be checked for foreign 
bodies.   

9. Illegal use If the DMA contains metered non-households, which could 
potentially use large volumes of water, a survey of these may 
find some illegal use.  

10.Repairs Check that repairs to reported leaks and bursts have been 
carried out.  

11.Reconsider 
night use 
allowances 

A list of un-metered non-households in the DMA should be 
examined to find large users, which might not have been 
metered.  When these are found, a meter should be installed, if 
possible, and night use monitored.  Similarly metered 
customers with potentially high night use should have their 
night use monitored.  

A physical survey of the DMA may be useful to find households 
with large night use.  This may be true if, for example, there is 
a large proportion of shift workers in the DMA, or many large 
gardens which are watered at night.  

 

If the leakage level is shown to be correct, than it is necessary to asses the 
accuracy of the leakage location activity and to question specifically if it is 
possible that a leak was not identified.  

The application of leakage location equipment is outside the scope of these 
Guidance Notes. However, as most location instruments are based on the 
acoustic method for detecting the presence of a leak, it is possible that the 
noise was not even picked up by the instrument. Non-metallic pipes and 
high background noise coupled to low operating pressures can seriously 
affect the efficiency of the instruments as can inaccurate maps or 
insufficient access points.  
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It is necessary therefore to undertake hydraulic testing with the aim of 
identifying more precisely the part of the network containing the largest 
consumption. This can be done by performing a night step test, during 
which the network is progressively isolated towards the DMA inlet by 
closing selective line valves. The reduction in flow immediately following the 
isolation of a step, corresponds to the consumption of the isolated part of 
the network. It is good practice to monitor pressure in ever step during the 
test, to verify that the closure has effectively isolated the network. 
Alternatively, if isolating the network is not feasible, it is possible to 
undertake sub-metering which has the same aim. The disadvantage relates 
to the cost of creating the flow monitoring points and the fact that it is not 
possible in this way to verify the isolation of the network. 

The detail procedure for undertaking step tests is outside the scope of 
these Guidance Notes. Listed below is a summary of the key points: 

• The consumption of any significant customer night use should be 
quantified during the test; 

• The steps should be as small as practical; 

• All valves to be closed should be checked for tightness before 
undertaking the test, and replaced if found to be inefficient. 

As a result of step testing or sub-metering, several lengths of main may be 
identified as having high night-flow losses. It is necessary to repeat the 
leakage detection activity in these areas and in some cases, create new 
access points to reduce the correlation lengths.  

There are several other indirect methods which could be applied to find 
leaks in the DMA. They include pressure logging within the DMA to identify 
mains where large total head changes occur over short lengths of main and 
the application of hydraulic network models to simulate the effect on 
pressures of a leak.  

2("� � � � ��� � ���  �  � � �
If DMAs have very low leakage (much lower than would be expected for a 
DMA with its characteristics: see Appendix E for the assessment of 
expected background leakage) then it may be useful to investigate the 
DMA to ensure it is functioning correctly. The points in Table 7.1 above 
could be used as a check list for ensuring the low leakage is real, with 
adjustments for low, rather than high apparent leakage. 

2()� = �� � ���  � ��� �� �� ���� 7 � � � �  �>� �� � �� �� �� ������ ?�
Even if all the significant leaks have been successfully located and 
repaired, it is possible that the reduction in leakage is short lasting. This is 
an indication of a network in poor condition and is often caused by the 
increase in pressure resulting from the repair of the leaks. There are two 
possible solutions: 
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• Mains replacement; 

• Pressure control. 

Mains replacement is by far the most costly solution and can usually be 
justified economically only when the value of the water is very high. 
However it does mean that the bursts will be completely eliminated. Care 
should be taken however when a partial substitution of the worst mains is 
undertaken, that the leakage in the original network does not increase.  

Pressure control on the other hand is a very effective and economical 
solution to the same problem. It involves installing a pressure reducing 
valve (PRV) on the DMA inlet which not only maintains the optimum 
pressure in the network at all times, but automatically compensates for the 
reduced flow following the repair of the leaks whilst maintaining the original 
operating pressures in the DMA. Experience has shown that in this way, it 
is possible to drastically reduce the frequency of bursts, even in networks 
which have very low operating pressures. However it does ideally require a 
single supply main and very careful designing and it won’t eliminate the 
need to replace certain main in a critical condition.  

2(+� 4 � � �  � �
All detected leaks should be repaired. The date and time of the repair 
should be noted. The repair should be seen so that a gross estimate of the 
size of the leak can be made. The change in flow into the DMA and the 
minimum night-flow before and after the repair should be noted. The AZNP 
should be monitored.. 

There are several possible outcomes to a leakage location and repair 
programme. These are shown in Table 2 

8 �  �	 ��5�: � � � � 	 � ��� � � ��	 � � �� 	 � � �� �

Outcome Further actions  
1. leaks detected and 

repaired: night-flow 
drops after repair by 
same amount as step 

no further action necessary 

2. leaks detected and 
repaired: night flow drops 
but by smaller amount 
than expected 

further investigation of night use in step,  
investigate pressure reduction possibilities 

3. leaks detected and 
repaired: no drop in night 
flow or an increase 

look for new leak in DMA 
investigate pressure reduction 
consider service and/or mains 
replacement 

4. leaks detected and 
repaired: night flow drops 
but rises again 

look for new leak in DMA 
investigate pressure reduction 
consider service and/or mains 
replacement 

5. leaks not detected in further investigation of night use in step 
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length of main with high 
night-flow losses 

investigate pressure reduction  
consider service and/or mains 
replacement 

 
In all cases where the leakage does not drop substantially, pressure control 
should be considered, because of its effects on both burst frequency and 
losses from existing bursts and leaks. Mains and/or service replacement is 
probably the most reliable method to eliminate a leakage problem, but this 
is seldom cost-effective..  
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Active Leakage Control (ALC). The process by which unreported leaks 
are detected and repaired. This contrasts to Passive Leakage Control. 

Average Zone Night Pressure (AZNP). The property-weighted average 
pressure in a zone during the minimum night flow period.  

Awareness Time. The time between the occurrence of an unreported leak 
and the water undertaking becoming aware of its existence. 

Background leakage. The component of leakage that is not effected by 
ALC. This usually consists of very small leaks.  

Bottom-up. This term refers to assessments of leakage made from night 
flows measured in DMAs and added together to produce an area leakage 
level. 

Burst. A failure of a pipe or service leading to leakage. In this publication 
this term is interchangeable with Leak. 

Cascade. A method of supplying DMAs where water flows through one 
DMA into another one. This necessitates more than one meter on some 
DMAs; a situation that is best avoided. 

Customer night use. The water used by customers during the minimum 
night flow period. 

DMA. A small metered area within the distribution network. The acronym 
stands for District Metered Area, but the term Distribution Monitoring Area 
is also used top describe the same thing.  

Economic Level of Leakage. The level of leakage at which the net 
present cost of operation of the network is a minimum.  

Flats. Apartments 

Flushing. The induction of high flows in pipes by opening hydrants or 
washouts.  

Hydraulic Balance Point: In a complicated network fed by several trunk 
mains, there will be points within the distribution mains network where the 
net flow is close to zero at a given time, as flows from different routes feed 
the customers on either side. These hydraulic balance points are often 
suitable for sector or DMA boundaries as the closure of a valve here will 
cause little disruption.  

Infrastructure. The physical components of the distribution network. This 
normally excludes electrical components. 

Leak. See Burst 
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Leakage. The water lost through holes in the pipes and tanks forming the 
network.  

Location Time. The time taken from the point where the Water 
Undertaking is aware of the existence of a leak to the point when the 
undertaking is aware of the exact location of the leak.  

Losses. Losses can be divided into apparent losses (meter errors and 
unauthorised consumption) and real losses. Real losses are equivalent to 
leakage from mains and service connections and overflows from service 
reservoirs and treatment plants Minimum night flow. The net flow into a 
metered area during the period of minimum flow: this period is usually one 
hour.  

Night Day Factor (NDF). The factor by which night flow losses, (calculated 
from the Minimum Night Flow over a one hour period), should be multiplied 
to obtain the daily leakage. The NDF is usually less than 24, due to lower 
pressures during the day.  

Night Line. See Minimum Night Flow 

Passive Leakage Control. Leakage control carried out by repairing only 
those leaks that become visible and are reported to the Water Undertaking. 

PRV. Pressure Reducing Valve. A control valve within the network which 
reduces the downstream pressure using various types of control method. 

Pressure Correction Factor (PCF). If leakage (L0) is either measured, or 
estimated, at one pressure (P0), then in order to estimate the leakage (L1) 
at another pressure (P1), a relationship of the form:  

PCF.LL 01 =  

can be used. The PCF is a function of the two pressures P1 and P0.  This 
method is frequently used to translate leakage estimated at 50m head into 
leakage at the actual pressure experienced in a zone. 

Pressure zero test (PZT) See zero pressure test. 

Rate of Rise of Leakage. The rate at which leakage increases with time 
between periods of active leakage control. This can be measured by 
analysis of long-term flow and repair records. It is usually expressed in 
litres per connection per day per year 

Repair Time. The time taken from the point when the undertaking is aware 
of the exact location of the leak to the point when the repair is completed.  

Reported burst. A leak that the water undertaking becomes aware of 
without any detection activity. The reasons for this are typically that the 
water becomes visible on the surface or the burst leads to loss of supply to 
customers. 

Rota cuts. Rationing of supply by providing supply to parts of the 
distribution network for restricted periods, often according to a timed rota. .  
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Run time of burst. The total time from the occurrence of a burst to its 
repair. 

Sector. A section of the distribution network, usually much larger than a 
DMA and often defined by clear natural or manmade boundaries, such as 
rivers or railways. 

Step test. A test to find the location of a leak. Parts of an area fed through 
a meter are progressively isolated while the flow is monitored. The drop in 
flow after each isolation is used to identify the amount of leakage in that 
isolated section.  

Top-down. Refers to assessment of leakage levels through a water 
balance.  

Unreported burst. A burst which can be found by active leakage control 
but not by passive leakage control. 

Water Undertaking. A general term for the organisation responsible for 
operation of the water supply and distribution system. 

Zero pressure test. A test to identify whether the boundary to a zone is 
watertight. An area of the distribution system is isolated by closing 
boundary valves. The pressure is monitored and if it drops to zero this 
indicates that the boundary is watertight. 
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The NDF for any DMA can be calculated by recording the hourly pressures 
at the AZP (average zone point) over 24-hour periods. Then if : 

• The AZP pressure over the hour of minimum night flow is Pmin 

• The AZP pressures corresponding to the hourly series of night flows 
Qo (00 to 01 hrs), Q2 (01 to 02 hrs) etc, are Po, P1, etc  

then the NDF can be calculated as 

 NDF = (Po/Pmin)N1 + (P1/Pmin)N1 + (P2/Pmin)N1 + ..... + (P23/Pmin)N1   

Where N1 is the exponent in the FAVAD equation which relates leakage 
rate to pressure, i.e. 

 Leakage is proportional to PressureN1 

It will be noted from the above formula that the NDF can be calculated 
without measuring the DMA inflows. If the relationship between average 
pressure and leakage rate is linear (N1 = 1.0), as can be generally 
assumed in the absence of specific estimates of N1 (see below), then the 
NDF equation simplifies to  

 ��
�

�
��
�

�
=

minP
pressuredailyAverage

.24NDF   

As 24-hour pressure profiles at the AZP can vary on different days of the 
week, and seasonally, the NDF also varies accordingly.  

3 ����  ��� � �� 	�.  �� � ��

The value of the FAVAD exponent N1 for pressure-leakage relationships in 
individual DMAs, based on extensive laboratory and field tests, is usually 
between 0.5 and 1.5. This is because background leakage, and detectable 
leaks (reported and unreported) from non-metal pipes, have N1 values 
close to 1.5, and are quite sensitive to changes in pressure. In contrast, 
detectable leaks (reported and unreported) from metal pipes have N1 
values close to 0.5, which are less sensitive to pressure.  

When doing detailed analysis of night flow components, it is necessary to 
take account of the different N1 values of different types of leakage.  

However, for calculating NDFs, from AZP pressure data, a simpler practical 
approach can be used, based on the following figure.: 



 

!  � � �+8


 � � �� � ��  � � � �� � �� ��

� "	#$ "#$ %�"&$ %�%

�

Favad Exponent N1 vs ILI: 
p = % of detectable real losses on metal pipes
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First, estimate the scale of the leakage in the DMA, on a scale of 1 (lowest 
possible) to 10 (very high); this will give you a crude approximation for the 
Infrastructure Leakage Index (ILI), which is normally calculated more 
objectively. Suppose you estimate that the ILI is around 5. 

Next, estimate what % of detectable leakage arises from metal pipes. The 
crudest estimate will be based only on the % of system pipe length (mains 
and service connections) that is metal. Suppose this is around 60%. 

Then, simply read up from ‘5’ on the X-axis, until you reach the ‘60%’ curve, 
then read across to the Y-axis to estimate the N1 value, which is around 
1.1. 
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Depending on local topography the ground level within a DMA may vary 
considerably, particularly in rural areas and in situations where the network 
is on the side of a valley. For calculations using the effect of pressure the 
average pressure within the DMA should be estimated. The average zone 
night pressure (AZNP) for a DMA should be the best estimate of the 
average pressure in the DMA at night, (when the minimum nightline is 
calculated). There are several ways to identify a surrogate point for this 
measurement:  

�� Place a pressure logger close to the mid point of the DMA and record 
pressure over several weeks to determine typical pressure at night. 

�� Obtain the ground level of all customer connections in the DMA.  
Calculate an average ground level of the connections.  Determine the 
total head from pressure measured or estimated at the inlet to the 
DMA.  Subtract average connection ground level to estimate AZNP.  

�� Use a calibrated hydraulic model of the network, calculate the 
pressure at each node in the DMA during the minimum night-flow 
period and calculate a connection-weighted average  

An approach used by one utility to determine AZNP in some 3000 DMAs 
was to initially obtain best estimates from local staff and then to gradually 
improve this estimate using its geographic information system to determine 
the average ground level of the connections in a particular DMA and to then 
determine the typical pressure AOD at night in the DMA from pressure 
loggers at critical points, pressure reducing valve outlet pressures, pump 
outlet pressures and top water levels of service reservoirs. 

Where a DMA contains multiple pressure zones, then AZNP should be 
calculated for each pressure zone and the AZNP for the DMA would be the 
connection weighted average. 

Example of multi pressure DMA 

Pressure zone 1--------500 connections at AZNP of 30 metres 

Pressure zone 2--------200 connections at AZNP of 70 metres 

Pressure zone 3--------700 connections at AZNP of 45 metres 

DMA AZNP  = (500*30)+(200*70)+(700*45)/(500+200+700) 

 = 43.2 m 

It should be noted that depending on local conditions AZNP can usually be 
estimated robustly by local staff after guidance has been given that suits 
local information.  As the pressure usually at night is the maximum that can 
be recorded in the zone, i.e. input pressure from PRV, service reservoir, 
etc, as the reduction in pressure during the day due to head loss is not 
required at this stage. 
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To calculate the average AZNP for a group of DMAs, value for each DMA 
should be calculated and then a connection weighted average should be 
calculated as per example of multi pressure DMA calculation. 

In situations where seasonal variations in pressure are experienced and 
considered to be significant it may be necessary to undertake pressure 
logging over a logger period of time to estimate the effect of seasonal 
variations. 

Where pressure systems are more complex or are subject to imposed 
reductions in flows to conserve or ration supplies consideration should be 
given to the impact on estimated AZNP 
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If large amounts of data on detection and repair costs are available, it is 
possible to develop a method to select DMAs for detection which will 
produce a near-optimal result. There are several variations on the method 
in use which use different levels of sophistication and different models of 
the leakage process. The description given here is a fairly simple approach, 
which can readily be improved. 

The data required for each DMA is as follows: 

�� The cost of carrying out leak detection in the DMA to get down to a 
background level of leakage after repair 

�� The value of the saving that can be achieved as a result 

�� The rate of increase of leakage between rounds of ALC 

The main assumptions are: 

�� The rate of rise of leakage between ALC rounds is linear 

�� The leakage level achieved immediately after ALC is not dependent 
on the starting level 

�� All data can be predicted accurately 

�� That repair costs are unimportant because all leaks would eventually 
become reported. 

In this case, as leakage rises, the detection and repair should be carried 
out at the point where the value of the excess losses equals the cost of the 
detection. This is illustrated in the figure below.   
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Much effort has been put into estimating night consumption in the UK. This 
has been driven partly by regulatory pressure. The methods set out below 
were developed during the UK National Leakage Initiative, in 1994. 
(Described in the Managing Leakage reports: “Managing Leakage, UK 
Water Industry Engineering and Operations Committee, published by 
WRc(1994)”). These relatively simple methods are likely to be suitable for 
application elsewhere as a first step. These methods have been further 
developed since 1994 and these developments are described in “Leakage 
Estimation from Night Flow Analysis, UK Water Industry Research Ltd 
(1999)”, “Estimating Legitimate Non-Household Night Use Allowances, UK 
Water Industry Research Ltd (1999)”  and “Household Night Consumption, 
UK Water Industry Research Ltd (2002)”. 

= � � �� � � �� �� �� � ��� �� ��
Irrespective of whether customers are metered or not, it is likely that 
household night use in a particular system will be affected by the internal 
plumbing system and the occupancy of a household.  Work in the UK has 
identified that occupancy of the household is a key factor to estimating 
customer night use.  This is not surprising as with the increased numbers in 
a household, the likelihood of using more water at night is greater.  To date, 
the majority of household night use has been based on: 

Household night use = Number of households x rate of night use  

Where average utility occupancy rate has been utilised to determine 
average night use. 

Summary Key results from UKWIR Household Night Consumption 

“The appropriate night consumption allowance will be different for each 
company and should be determined from local data.  Indicative results are 
presented in this report derived from IHM data.  The results are derived 
after eliminating any leakage but do not make allowance for meter under-
registration or any bias in the sample data sets compared to the 
composition of company populations. 

Annual average household night consumption values between 1.8 and 2.5 
1/prop/h have been derived from the individual household monitors (IHM) 
reviewed for this project using all available data.  These figures, which 
exclude under-registration allowances, are higher than the 1.7 1/prop/h 
(including under-registration) quoted in Managing Leakage. 

 

� � � @� � � �� � � �� �� �� � ��� �� �
To identify non-household night use in a DMA, it is useful to identify the 
non-households that lie within the DMA. 
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The Managing Leakage Report E has a basic method for calculating non-
household night use.  This gives the result: 

Non-household night use = number of non-households x 8 litres/hour 

The value of 8 has recently been updated by one UK Company to 10 
litres/hour as a result of more detailed work excluding exceptional 
night users. 

It has been found that this allowance often underestimates the actual non-
household night use.  

The Managing Leakage Report E also has a more complex method, where 
there are five categories of night user and: 

Non-household night use = sum of (non-households in category x 
allowance for category) for categories A to E. 

The categories, and their allowances are shown in the following table: 

8 �  �	 �! /�5�0 � � /� � � � 	 � � �
 �0 �� � �6 � 	 �� � 	 � � � �	 � �

Category Customer Type Night use 
allowance (l/hr) 

A Unmanned fire/police stations, 
telephone exchanges, banks, churches, 
chapels, gardens/allotments, market 
gardens, water and sewage treatment 
works. 

0.7 

B Shops, offices, craft centres, 
launderettes, depots, large domestic 
properties, guest houses, garages/filling 
stations, touring caravan sites, farms, 
smallholdings, cattle troughs. 

6.3 

C Hotels, schools/colleges, restaurants, 
cafes, public houses, social halls, 
residential caravan sites, livery stables. 

10.4 

D Hospitals, factories, public toilets, work 
sites. 

20.7 

E Old peoples homes, mines, quarries. 60.6 

 

4 � � � � ��� � � �� � � ���
Typically, these are the larger Non household industrial customers whose 
night use is more than 500 l/hr and are likely to have a significant variation 
in night use from night to night.  These customers can be identified from 
meter reading records.  It is then usually necessary to log the customer 
meters at night, or read customer meters at a one-hour interval typically 
between 01:00 and 05:00 am. 
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Some customers will have consistent night use, while others will have night 
use, which will change markedly from night to night, or week to week.  This 
can usually be understood by asking the customer.  If night use is variable 
for a large customer, several night flow meter readings or several meter 
loggings could be used. 

Much exceptional use is isolated incidents, where a normally insignificant 
user uses more than 500 l/hr for only a few nights in a year.  These should 
not be included as exceptional users.  For example, factory maintenance 
may use very significant amounts of water occasionally at night. 

Very large metered customers should have their meters measured as 
export meters from the DMA.  This is especially important if the night use is 
variable. 
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The average zone night pressure AZNP for a DMA should be the best 
estimate of the average pressure in the DMA at night, (when the minimum 
nightline is calculated). This is explored in Appendix B above.  

'  �� � � ��� � ��  � � � �� � � � ���  �  � � �

Using burst and background principles, background leakage in a DMA can 
be estimated based on: 

�� Length of main 

�� AZNP average DMA night pressure 

�� Number of property connections 

�� Length of private connection pipe (UK service pipe, USA property line 
from curb stop to customer meter).  

� �� � � 	 �' /�5�� � � � � �� 	 � �� � �� ��� � �� � ��� � � � � 	 � �� � � � 	 � �� � �

Water main 
(cross 

section)

Service 
connection

Public 
connection 

pipe (usually 
1 to 5 

metres long)

Plumbing to 
consumers

Private 
connection 

pipe

Property 
boundary

Point beyond 
which 

background 
losses would 

no-longer 
normally  
occur. 

Normally at  
internal 

meter, or 
where pipe 

enters 
building

Ground surface

 
 

The recommend formula by IWA in 2004 is as follows.  

The background loss estimate with infrastructure in good condition at 50 
metres in litres/hr  
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= 0.02 x metres of main + 1.25 x no of connections + 0.033 l/metre of 
private pipe + 0.25 litres per household or non household (industrial) 

A more flexible approach is the following equation: 

= ICF x (0.02 x metres of main + 1.25 x no of connections) + (ICF see note 1 x 
0.033 l/metre of private pipe) + 0.25 litres per household or non household 
see note 2 

ICF is the Infrastructure Condition Factor the value normally lies between 1 
and 4.0, depending on the condition of the mains: (a value of 1 if the mains 
are considered to be in good condition, or 4.0 if they are considered to be in 
poor condition from a water tightness point of view). An initial estimate of 2 
was used extensively in the UK whilst more detailed information was 
gathered. 

The equation can be further developed to take into account pressure by 
using a pressure correction factor based on the average zone night 
pressure.  A power law of 1.5 has been developed specifically for 
background losses from international data.  

 

So overall the background losses in a DMA could be given by: 

= (ICF x (0.02 x metres of main + 1.25 x no of connections) + (ICF see note 1 
x 0.033 l/metre of private pipe)) x (AZNP/50) 1.5 + (0.25 litres per household 
or non household x (AZNP/50) 1.5 see note 2 & 3) 

Note 

1. Where the customer meters are located at junction of property 
connection and private pipe it is unlikely that ICF affects the private 
pipe, as it would be in the interest of customers to minimise any 
leakage. 

2. Plumbing losses are unlikely to be affected by the condition of the 
underground infrastructure 

3. Pressure will only affect customer plumbing where supplies are 
direct. Therefore customers plumbing supplied via ground tanks or 
roof top storage will not be affected by pressure and an initial value 
of plumbing losses of 0.25 l/household/non household (industrial 
customer is recommend) 
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DMA infrastructure details  
Length of main metres 22500 

AZNP metres 60 

Number of connections 1500 

Number of private pipes 1500 

Average length of individual private pipe metres 12 

ICF 1.5 

 
Calculation where customers are not metered and supplies are direct 

={1.5 x [(22500 x .02) + (1500 x 1.25) + (1500 x 12 x .033)] x (60/50) 1.5 }+ 
{(1500 x .25) x (60/50) 1.5 } 

= 6250 l/hr or 6.3 m3/hr 

Calculation where customers are metered at boundary of private pipe and 
supplies are direct 

= {1.5 x [(22500 x .02) + (1500 x 1.25) +(1500 x 12 x .033)] x (60/50) 1.5}  

= 5860 l/hr or 5.9 m3/hr 

Variation of background losses with AZNP and ICF customer meters at 
boundary of private pipe and supplies direct 

 

 Background losses  (l/connection/hr) for infrastructure in: 

AZNP Good Condition Average Condition Poor Condition 

 ICF=1 ICF=2 ICF=4 

20 0.5 0.9 1.6 

30 1.0 1.6 3.0 

40 1.5 2.5 4.6 

50 2.1 3.5 6.4 

60 2.8 4.7 8.5 

70 3.5 5.9 10.7 

80 4.2 7.2 13.0 

90 5.1 8.6 15.6 
[Note: assumes 10m of mains/connection & 12 metres average private pipe 
length] 
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The examples set out here summarise a few projects that have 
successfully implemented DMAs in several different countries. These 
examples show some of the particular problems and solutions which have 
been encountered in countries with widely differing types of infrastructure, 
customer requirements and regulatory regimes. It is important to note that 
the methods used here are not necessarily those recommended by the 
Guidance Notes authors or IWA Water Loss Task Force as best practice.  
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 Description of the project 

1 A brief description of the location  

 The DMA was created in El Dorado Irrigation District (EID), California, United States of 
America as part of a research project partially funded by the American Water Works 
Association Research Foundation (AwwaRF) with the goal to assess the transferability of 
international leakage management technologies to North America.  

The topography of EID s̀ supply area is not homogeneous, which is why the distribution 
network is already subdivided in pressure control zones. Therefore, it was decided to 
convert an existing pressure zone into a permanent DMA. The selected area is “North 
Shingle”, which is fed through a single inflow point. The DMA serves a population of 
approximately 1,200 people with an average zone pressure of 78 meters. It took about 3 
month from start of DMA design until the DMA was operational. 

2 The level of real losses before and after installing DMAs 

 The level of real losses in the North Shingle DMA was 1,545 l/con/day or 18.62 l/con/day/m 
with a corresponding ILI of 9.23. 

3 Supply arrangements for typical households.   

 Every service connection in the DMA is equipped with meter, no storage tanks are found in 
the households. The typical supply pressure at the point of delivery ranges from 50 meters 
to 140 meters in the DMA. Due to the hilly terrain there are parts of the DMA with 
excessive pressure and therefore the majority of service connections are equipped with a 
PRV.  

 Design 

4 What influenced the design of individual DMAs?.  

 The design of the DMA was influenced by the need to make use of an existing pressure 
control area with a single feed, and the need to be able to meet fire flow, minimum 
pressure, and insurance requirements.  

5 Was pressure management considered at the design stage? 

 Pressure management was considered at the design stage due to excessive system 
pressures. The DMA is fed through one inflow point which is equipped with 2 PRVs (one 
lead PRV and one lag PRV) which are managing the pressure for the entire DMA. 

6 The methods used for design.  

 No design work for the boundaries of the DMA or the size of the DMA was required as an 
existing pressure control zone was converted into a permanent DMA. Consumption data 
from the billing system and known ratios between summer and winter peak demand have 
been assessed. Fire flow demands and requirements have also been assessed. Historic 
pressure data from critical points within the DMA have been analyzed and in addition new 
pressure measurements throughout the DMA have been conducted. Based on the initial 
assessments, calculations and measurements, it was decided that the existing 200mm 
inflow main would have flow velocities during the period of minimum night consumption 
that are too low for accurate flow measurements. Therefore the project team came to the 
decision to convert the lead 150mm PRV into a metering PRV (this technology is available 
from most PRV manufacturers). The lag 200mm PRV feed was designed to be used for fire 
flow and emergency purposes. No network model was used for the DMA design.   
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8 How was the integrity of the boundary tested? 

 The results of the minimum night flow (MNF) test and the calculated daily consumption per 
service connection was cross checked with the billing data from the DMA accounts. The 
billing data consumption and daily consumption based on the MNF test matched very 
closely verifying that integrity of the DMA. 

9 How were the boundaries of DMAs defined and managed? 

 The DMA boundaries were existing, with significant physical separations due to 
topography, different pressure zones, and dead-end lines. 

10 Do the new boundaries include flushing facilities? 

 No new boundaries were established, and the existing boundaries included blow-offs for 
manual flushing as needed. 

11 Are any systems in place to ensure boundary valve operation is recorded? 

 N/A 

12 How were meters selected.  

 As an existing pressure control zone was converted it was decided to make use of the 
existing pressure regulation station. Through research it was found that PRV 
manufacturers offer retrofit kits for PRVs to convert existing PRVs into metering PRVs. The 
manufacturer for the metering PRV kit was selected based on the manufacturer of the 
existing PRV.  

13 Describe a typical meter installation  
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Picture 1: Pressure regulation station                        Picture 2: Metering PRV on bypass 

The lead 150mm PRV on the right in Picture 1 was converted into the metering PRV 
shown in Picture 2. The installation is underground and includes the isolation gate valves. 

14 How were night use allowances calculated for use in assessing leakage levels (if any) 

 Based on the billing data base, 4 types of customers have been identified in the DMA. For 
each type of customer a representative sample of meters was read during the MNF test in 
order to calculate the total MNF consumption. 

 DMAs in use 
15 How is flow data collected from typical DMA? 

 The flow and pressure data (upstream and downstream pressure) at the inflow PRV and 
the average and critical pressure of the DMA are logged at 5 minute intervals and stored 
by loggers. These loggers are manually downloaded on a monthly basis and the data is 
then analyzed.  

16 How is flow data checked to ensure that it is valid? 

 As the flow meter is new, no third party test on the flow meter has been undertaken so far.  

17 Describe how the flow data is interpreted to assess the level of losses. 

 The level of losses in the DMA is assessed based on MNF measurements which are 
supported by minimum night consumption readings. No water balance is used.  

18 Describe the process by which decisions are made on which DMAs are investigated by 
leakage control teams. This may include a prioritisation process. Include examples of the 
use of a prioritisation process, showing which performance indicators are used and which 
DMAs were selected as a result. 

 N/A 

19 What happens when DMAs are investigated by leakage control teams but the leakage is 
not reduced? 

 N/A 

20 Describe maintenance processes, such as DMA boundary checks, audits of DMA data, 
pressure logging, flushing. This should include whether at regular frequencies or in 
response to incidents. 

 N/A 

21 Describe the other uses that you put DMAs to, such as: Assessing annual losses; Demand 
studies; Per capita consumption (PCC); Infrastructure condition factor (ICF); Planning; 
Performance monitoring; Monitoring costs; Natural rate of rise of leakage; Network 
analysis; Day to day running of network. 

 Other uses of the DMA for the purpose of the AwwaRF study are the assessment of the 
ICF after repeated leak detection and repair campaigns and the monitoring of the natural 
rise of leakage. 

 Other aspects 

22 Is there any other aspect of the design, installation and use of DMAs that has been 
important, but has not been covered in the questions above? This could include particular 
problems and how they have been overcome 

 N/A 
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 Description of the project 

1 A brief description of the location  

 The town of Lemesos is situated on the south coast of the island of Cyprus in the 
north-eastern Mediterranean Sea, has a current population of 150.000 and is the 
second largest town on the island of Cyprus.  The Water Board of Lemesos is a non-
profit, semi-government organisation charged with the responsibility of supplying 
potable water to the town and environs of Lemesos. 

In 1985, the Water Board embarked on an ambitious expansion programme involving 
a major extension to the distribution system, which included division of the 
distribution network into pressure zones, each with adequate storage reservoir 
capacity.  A series of pumping stations to lift water to higher zones was constructed.  
A comprehensive Supervisory Control and Data Acquisition system (SCADA) with 
remote terminal units installed at all sources of water, reservoir and pumping station 
sites with its central control room at the main offices of the Water Board was 
commissioned in 1988. 

The topographical location of Lemesos is such that the elevation of the supply area 
varies from zero at the coast to 315 meters above sea level at the foothills.  To 
ensure acceptable pressure limits to consumers, the entire supply area was divided 
into seven pressure zones, each with its own dedicated storage reservoir.  Each 
pressure zone is divided into District Metered Areas (DMA’s) which are fed by 
gravity from their respective reservoir via ductile iron trunk mains varying in 
diameter from 800mm down to 300mm. Until 2003 the total number of DMAs was 27 
but it was considered important to carefully examine the size of these DMAs 
particularly in  the larger pressure zones in an effort to further reduce the real losses 
from the system and at the same time to provide better and more effective active 
leakage control. The restructuring of the DMAs commenced in 2004 and will be 
completed in 2007 resulting in 52 DMAs. The average pressures in the DMAs before 
restructuring varied from 4-6 bar. After restructuring pressure control is applied to 
all DMAs with pressures varying from 2-4bar. 

Today the Water Board covers an area of about 100km2 with approximately 800km of 
underground mains, with approximately 70.000 registered consumers and annual 
water production of 13MCM.   

2 What was the level of real losses before and after installing DMAs? 

 See attached Graph 1 and Graph2 

3 Briefly describe the supply arrangements for typical households:   

 All house connections are metered and the water meter is placed very close to the 
property line. Up to the water meter is the responsibility of the Water to install and 
maintain the connection. After the water meter it is the responsibility of the property 
owner to install the plumbing. It is required that a direct potable supply point is 
taken from the water meter to the kitchen. A second supply point is to the cold water 
roof tank from which the water is distributed into the house for use in the 
bathrooms, toilets, kitchen, etc. The level of pressure provided by the Board is 2 bar 
at the highest point of the DMA at maximum demand. The AZNP in DMAs is of the 
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order of 2.5-3.5 bar. Under normal conditions the water supply is continuous. 
However, in periods of extreme water shortage the supply has been intermittent.   

 Design 

4 What influenced the design of individual DMAs?  

 The following key factors formed the basis of the DMA design:  

• size of the DMA 

• minimum variation in ground level across the DMA, 

• easily identified boundaries that are robust, 

• area meters correctly sized and located,  

• single entry point into the DMA, 

• discrete DMA boundaries, 

• pressure optimised to maintain standard of service to customers, 

• degree of difficultly in working in urban area. 

 

It was aimed to have small to medium size DMAs (up to 3000 properties) with 
minimum ground level variation so that effective pressure reduction and control 
could be applied. Physical discontinuity of pipelines was applied at boundary 
conditions between DMAs avoiding where possible dead-ends. In cases of dead 
ends flushing facilities were installed. Main highways and physical feature such as 
streams were chosen to form discrete boundaries between DMAs.   

 

5 Was pressure management considered at the design stage?  

 The variation in ground levels across the study area was examined and particular 
attention was given to the influence of the pressure within the DMA. Management of 
pressure is a key factor in an effective leakage management policy.  This has long 
been recognised by the Water Board and the ultimate goal is for all DMAs to be 
equipped with PRVs to reduce pressure where possible and to control and stabilise 
pressure in DMAs where pressure reduction is not practicable. 

Measurements of pressures within the DMAs were carried out to establish operating 
pressures at the low, medium and high points of the DMA as well as the Average 
Zone Night Pressure (AZNP) for each DMA.  Furthermore, the pressure 
measurements were critically examined with the aim to reduce pressure as much as 
possible whilst maintaining the minimum standard of service to the consumers. As a 
rule a minimum standard of service of 2 bar at the highest point in the DMA at 
maximum demand was considered.  This of course had to be reconsidered in some 
cases where there were high-rise buildings which used the system’s pressure to get 
the water to their roof tanks.  In these cases the Water Board will subsidise the 
installation of ground tanks and pumping systems in order to pump the water to the 
roof tanks of the high rise buildings thus enabling further pressure reduction to be 



 

!  � � �12


 � � �� � ��  � � � �� � �� ��

� "	#$ "#$ %�"&$ %�%

�

effected. 

  

6 The methods used for design.  

 The important factor considered was the hydraulic performance of the network. This 
was designed to provide optimum performance within the limitation imposed by the 
network layout.  

7 Was a hierarchy of metered zones used? 

 All DMAs were designed to function independently with a single point of entry which 
is metered.  

8 How was the integrity of the boundary tested?  

 In order to verify that all interconnecting pipes between DMAs were located and 
isolated a zero pressure test was carried out which involved closing the valve at the 
inlet to the DMA thus isolating the DMA and observing that the pressure within the 
DMA dropped immediately indicating that all interconnecting pipes were isolated.  
This test was usually carried out between 02:00 and 04:00 in the morning in order 
not to inconvenience consumers. 

 

9 How were the boundaries of DMAs defined and managed?  

 The design process yielded DMAs of smaller, more manageable size with physical 
pipe work discontinuity between DMAs.  With closed valve boundaries there is 
always the danger of the valves accidentally being opened and remain open.  

10 Do the new boundaries include flushing facilities? 

 Where possible dead ends are avoided for water quality reasons. If this is not 
possible flushing facilities are provided at these points. 

11 Are any systems in place to ensure boundary valve operation is recorded? 

 There are no boundary valves. The policy of the Water Board is to have pipe work 
discontinuity.  

12 How were meters  selected. This includes both the type of meter and the size selected. 

 The selection of the flow meters was based on the historical data available of 
minimum, average and peak flows taking into consideration seasonal variations.  
The meters chosen were low cost mechanical “Waltman” type of metrological class 
B with pulse output having a flow range up to 200 m³/hr.  Most DMAs required a 
100mm nominal diameter meter with the larger size DMAs needing a 150mm nominal 
diameter. 

 

13 Describe a typical meter installation. 

 PLEASE SEE ATTACHED PHOTOGRAPH 

14 How were night use allowances calculated for use in assessing leakage levels (if any) 

 Data required to establish legitimate customer night use and background leakage in 
each DMA were collected. Having available this information the Burst and 
Background Estimates (BABE) component approach to leakage was used to analyse 
the Minimum Night Flow (MNF). 
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 DMAs in use 
15 How is flow data collected from typical DMA? 

 It is essential, for the effective operation of DMAs, to establish a reliable on-line 
monitoring system in order to apply best practice DMA management which involves 
the analysis of DMA night flow referred to as the Minimum Night Flow (MNF) in order 
to assess leakage.  For this purpose each district meter is equipped with a 
programmable controller which is powered in most cases by solar energy panels 
providing a cheap and effective solution.  The programmable controller is 
performing the following tasks: 

• Data logging of flow and pressure 

• Control (open-close) of PRV 

• Communication with the control room at Water Board’s offices via a PSTN 
line, GSM, radio or landline. 

 

The on-line monitoring of the district meters combines information technology and 
telecommunication networks to transfer the data via the World Wide Web. The 
historical data gathered in the programmable controller of each DMA are sent by the 
controller to an email account. Dedicated software operating from a computer at the 
Water Board’s control room connects to this email account every hour and 
downloads the data, which are first sorted according to the DMA and then are used 
to update existing reports. Direct access to the programmable controllers from the 
control room enables modification to the programming of the controllers, 
downloading of historical data on request and closing or opening of the PRVs. A 
typical template of the district meter on-line monitoring is shown in Figure 1. 

 

 

16 How is flow data checked to ensure that it is valid? 

 Continuous flow monitoring began immediately upon completion of each DMA.  This 
enabled the establishment of the flow pattern for the DMA providing essential 
information such as maximum and average daily flows as well as minimum night 
flows. A typical flow and pressure pattern in a DMA is shown in Figure 2. 

17 Describe how the flow data is interpreted to assess the level of losses. Does this include 
both a night-flow measurement and a water balance? How are these reconciled? Is the 
IWA water balance used? If a water balance is used at DMA level, what period is it carried 
out over and does it include measurement of customer consumption over the same period? 

 Data is collected and BABE calculations are carried out in order to determine 
background and locatable losses for each DMA.  In order to determine the locatable 
losses in a DMA the Minimum Night Flow is used which is taken from the on-line 
monitoring system. The DMAs are then ranked according to level of locatable losses 
and active leakage control is performed in the DMA with the highest ranking. This 
“bottom-up” approach is performed for all DMAs. A water balance is performed on 
an annual basis as a “top-down” approach arriving at the level of real losses. This 
level is compared with the “bottom-up” result and necessary adjustment are made 
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to the assumptions made in both approaches until the level of real losses is the 
same using both methods. 

18 Describe the process by which decisions are made on which DMAs are investigated by 
leakage control teams.  

 The prioritisation is based on the level of locatable losses. In the example below the 
priority for locating and repairing leaks is been given first to DMA 230 followed by 
DMA 225 and DMA227. For the rest of the DMA it is considered uneconomical to 
investigate for locatable losses as the level of these is below one equivalent pipe 
burst(Table 1). 

19 What happens when DMAs are investigated by leakage control teams but the leakage is 
not reduced? 

 At the Water Board of Lemesos we use the four basic constraint activities, i.e. 
Pressure Management, Pipeline and Asset Management, Active Leakage Control and 
Speed and Quality of Repairs to reduce leakage. This methodology is very effective 
and there is no reason if applied correctly not to have reduction in leakage.  

20 Describe maintenance processes. 

 Data collection is continuous for both flows and pressures through the on-line 
monitoring. 

The following activities are carried out at regular intervals: 

• Checking and cleaning of area water meter strainers every six months. 

• Checking and adjusting if required PRV settings every six months. 

21 Describe the other uses that you put DMAs to. 

 Of course DMAs are extremely useful for assessing real losses. In addition useful 
information and data on customer demand, seasonal demand variation, pressure 
fluctuation, and frequency of pipe bursts are obtained.  

 Other aspects 

22 Is there any other aspect of the design, installation and  use of DMAs that has been 
important, but has not been covered in the questions above? This could include particular 
problems and how they have been overcome 

 It is important to understand that the application of DMA philosophy must be a part 
of a strategic plan for effective and efficient Leakage Management.  
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Figure 1. Typical template of the on-line district meters monitoring system 

 
 

 

 

 
Figure 2. Typical flow and pressure pattern in a DMA 
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Table 1.   Typical prioritisation  for Pressure Zone 2 
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 Description of the project 

1 A brief description of the location (e.g., country/state; the population served, typical supply 
pressures; a brief description of the supply arrangements), the reasons for considering 
installing DMAs and the actual duration of the project from start of design to completion of 
functioning DMAs..  

 The city of Bangor is located in Wales, UK. The city is a small university town 
comprising mainly of residential buildings, offices, university buildings, shops and 
light industry on industrial estates. The residential buildings are a mix of terraced 
and detached houses typical of the UK. 

The supply to the city was from two remote water treatment works via local service 
reservoirs with an additional direct supply from the trunk mains into the distribution 
network. No effective active leakage control was being practised. 

Active leakage control was necessary, as at peak demand or when bursts occurred 
the same high-level properties went without water. The city lies in a valley with the 
service reservoirs on one side and the bulk of the properties on the valley floor or 
on the opposite side.  The properties are situated at sea level to around 80 m AOD 
with the service reservoirs at 94 &114 m AOD. 

Active leakage control using DMAs was chosen for implementation, based on the 
predictions of reduction in leakage indicated in Report 26 Leakage Control Policy 
and Practice and the need to move to a method of leakage control where the actual 
leakage levels could be measured. 

The overall duration of the project to completion of the final DMA and PRV regime 
was over many years as the initial phase was to improve mapping followed by initial 
sectorisation, DMA, PRV design and implementation followed by relining of existing 
cast iron mains followed by additional fine tuning of PRV management. 

2 What was the level of real losses before and after installing DMAs in any or all of the 
following units: m3/yr, l/connection/day, litres/connection/day/m of pressure, ILI. 

 Initial estimate of leakage was based on sample measurement was of the order of 
440 l/connection/day rough estimate of 6-8 l/connection/day/m 

3 Briefly describe the supply arrangements for typical households: whether there is storage 
in the household, and if so whether ground-level tanks and/or elevated tanks; whether 
typical connections are metered; the typical (or required) supply pressure at the point of 
delivery; whether supply is continuous everywhere in the area served.   

 Typical houses are supplied by separate 12mm diameter service pipes, which are 
not metered, with either one or all of the cold water taps supplied direct from the 
mains and all the hot water taps and remaining cold taps supplied from small 
household storage tanks typically in the roof space. Supply continuous to 99% of 
connections. 

 Design 

4 What influenced the design of individual DMAs? This could include: keeping similar pipe 
materials together; the target DMA size; water quality; number of boundary valves, fire 
fighting; insurance; reliability of supply; maintaining similar pressure (available head) 
across the whole DMA to facilitate pressure management etc.  



 

!  � � �%1


 � � �� � ��  � � � �� � �� ��

� "	#$ "#$ %�"&$ %�%

�

 The design of the DMAs was governed by the topography, water quality and the 
existing network configuration  

5 Was pressure management considered at the design stage? If so was it designed to cover 
all DMAs? If not how were decisions made on where to install pressure management? 

 Due to the topography, pressure management short term and long term was 
integrated into the design of the DMAs. The initial opportunities to pressure manage 
were not available as excessive leakage was causing too much head loss across the 
system. Once an initial sweep of the city for bursts had been completed and the 
network sectorised by future pressure requirements, the pressure was then maintain 
at the lower pressures the customers had previously experienced at peak demand. 
Additional fine-tuning of the pressure management system was implemented on 
completion of mains scraping and lining of cast iron pipes, which increased the 
network hydraulic capacity. This work was undertaken due to water quality 
problems 

6 The methods used for design. This could include what initial investigations and trials were 
made, and whether (and to what extent) network models were used.  

 The initial mapping of the area was incomplete and part of the design process to 
determine DMA configuration was the complete relocation of existing mains and 
subsequent mapping. The topography and main link mains into the network readily 
determined the DMA layout. Outline network analysis was undertaken to determine 
the broad sectorisation of the area into pressure areas and confirm redundant links 
that could be abandoned. 

7 Was a hierarchy of metered zones used: i.e. did the DMAs fit into larger metered zones, 
and were these larger zones installed as part of the same process, or did they already 
exist, and if so were they already metered? 

 There is a hierarchy of metering with initial input meters into the two service 
reservoirs (SRs) followed by outlet meters to the SRs and where the outlet to the SR 
meters do not directly input into the DMA, further meters downstream supplying into 
the DMA. The network configuration allows for one input meter and no export 
meters into all DMAs. There are additional meters upstream of the SRs on the trunk 
main links back to the water treatment works. 

8 How was the integrity of the boundary tested? Was it by listening to valves, carrying out a 
pressure zero test on the whole DMA (where an area is isolated from the rest of the 
distribution system and the pressure monitored to ensure it drops to close to zero), carrying 
out a pressure-zero test on individual section of main next to the boundary, or some other 
testing method. 

 The integrity of the boundaries was tested by variety of methods initially by listening 
on valves; comparisons of adjacent pressures and finally by pressure zero testing. 

9 How were the boundaries of DMAs defined and managed? For example: are boundary 
valves closed and marked or are sections of pipe removed and the ends capped to 
produce permanent boundaries? 

 The boundaries of the DMAs were formed with closed valves, where the lids of the 
closed valves are painted red and the valves are indicated as closed on the 
electronic mapping system. In the event of the valves having to be opened status 
reports are generated. 

10 Do the new boundaries include flushing facilities? 

 Where necessary flushing facilities were located by closed valves 

11 Are any systems in place to ensure boundary valve operation is recorded? 

 Initial management of the closed valves in the initial period required considerable 
effort but once the DMA configuration had been established closed valves were 
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recorded on mapping system and requirement to complete status reports if the 
valves were operated. 

12 How were meters were selected. This includes both the type of meter and the size 
selected. 

 Meters selected were of the Waltman type with ability to generate pulse outputs. 
Majority of DMA meters rang 80 to 100 mm with some 150 mm 

13 Describe a typical meter installation (i.e. is the meter on a bypass, what materials and 
jointing are used, where are the gate valves and hydrants, is the installation underground?) 
This may be most easily described with a diagram or photographs. 

 Meters are located in underground chambers, except where they are fitted in service 
reservoir control chambers. Where possible the meters are either on a by pass or 
have by pass round them for ease of replacement. 

14 How were night use allowances calculated for use in assessing leakage levels (if any) 

 The calculation of night allowance has been gradually refined in line with best UK 
water industry practise and is now based on the BABE approach of determining 
customer night use and background leakage. 

 DMAs in use 
15 How is flow data collected from typical DMA? This includes the frequency of data 

collection, the data storage intervals, whether the data is stored in a logger and retrieved 
manually or via telemetry. Is pressure is recorded? 

 Data over the period the DMAs have been established has been collected in a variety 
of ways and has gradually moved to continuous logger data acquisition with modem 
links enabling daily retrieval of data and alarm sensing of excessive flows.  

16 How is flow data checked to ensure that it is valid? 

 Comparison against previous flow patterns and checks on adjacent DMA flows. 

17 Describe how the flow data is interpreted to assess the level of losses. Does this include 
both a night-flow measurement and a water balance? How are these reconciled? Is the 
IWA water balance used? If a water balance is used at DMA level, what period is it carried 
out over and does it include measurement of customer consumption over the same period? 

 DMA leakage levels are typically analysed weekly based on the MNF and the 
predicted BABE background leakage level plus assessed customer night use. The 
DMAs with the highest potential excess leakage are then targeted for active leakage 
control. Annually a bottom up assessment of annual leakage using the minimum 
night flows (MNFs) from the DMAs is undertaken and compared with the annual 
water balance or top down approach to leakage. The top down approach estimates 
customer use from customer meters and an estimate of unmeasured customer use 
based on a per capita consumption monitor for unmeasured customers. Note all 
industrial users are metered. 

18 Describe the process by which decisions are made on which DMAs are investigated by 
leakage control teams. This may include a prioritisation process. Include examples of the 
use of a prioritisation process, showing which performance indicators are used and which 
DMAs were selected as a result. 

 Inspectors are responsible for a group of DMAs and active leakage is based on 
weekly reports that assess the current level of excess leakage in each DMA. 
Prioritisation of the DMAs is either by total excess leakage or excess leakage per 
100 connections.   

19 What happens when DMAs are investigated by leakage control teams but the leakage is 
not reduced? 
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 If the predicted level of leakage cannot be achieved by a significant level, additional 
checks are undertaken to insure boundary integrity, exceptional night users and 
finally if appropriate a noise logging survey is undertaken. 

20 Describe maintenance processes, such as DMA boundary checks, audits of DMA data, 
pressure logging, flushing. This should include whether at regular frequencies or in 
response to incidents. 

 Data is retrieved daily and pressure-reducing valves are maintained annually. 

21 Describe the other uses that you put DMAs to, such as: Assessing annual losses; Demand 
studies; Per capita consumption (PCC); Infrastructure condition factor (ICF); Planning; 
Performance monitoring; Monitoring costs; Natural rate of rise of leakage; Network 
analysis; Day to day running of network. 

 DMAs are utilised to determine PCC and infrastructure condition ICF as part of the 
assessment of economic level of leakage. With increased sophistication of network 
modelling to include all mains models, the DMA flow patterns are utilised to 
determine nodal demands within a DMA. 

 Other aspects 

22 Is there any other aspect of the design, installation and  use of DMAs that has been 
important, but has not been covered in the questions above? This could include particular 
problems and how they have been overcome 

 A key element of the success of DMA active leakage control is management 
commitment and a realisation that success is only brought about with an ongoing 
commitment. In this example the DMA infrastructure has remain largely unchanged 
for 20 years, continuous supply even at peak demand is maintained and leakage has 
been reduced from 440 to 110 L/connection/day. 
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Description of the project 

Project situated in Johore, the southernmost state in Peninsular Malaysia. 

800,000 metered consumers with a 100% coverage of population in the 
state. 

Typical supply pressures are between 1 bar and 7 bar. To install Pressure 
Reducing Valve for pressure above 3bar. 

The contract requires Ranhill Water Services to undertake a holistic 
approach to reduce the current NRW level of 36.6% down to 20.0% by the 
year 2010. Presently there were 650 DMAs which to be monitored and will 
be expanded to 800 within the next two years to cover 100% of customers 
in the state of Johore. 

Non Revenue Water is an indicator of operational performance, calculated 
by taking total production volume minus total billed volume. 

To implement active leakage control with a manageable control area, water 
supply areas were divided into sub areas as District Metering Area (DMA). 
DMAs were fed through one feeder and adjacent areas were separated 
with boundary valve which will be closed at all time. This is to ensure 
incoming flow can be recorded and monitored. 

To establish a DMA, from mapping of pipeline, pressure survey, zero 
pressure testing, Legitimate Night Flow sampling, T factor calculation, 
installing and commissioning of flow meter right up to first flow 
measurement thus monitoring of  DMA, it will take an average of 1 month to 
be completed.  

Real losses in DMAs were monitored using Net Night Flow figures. During 
the earlier stage of the project, levels of real losses were ranged between 
5lit/sec. to 50lit/sec. By implementing active control policy , DMA nightlines 
are to be reduced to average of 2.5lit/sec. 

Most of households were supplied through their elevated storage tank with 
the minimum capacity of 0.5 m3. Only one direct tap was allowed. All 
consumers were metered and meter readings were made monthly. 
Minimum allowable residual head for each household was 7.6m head. 
Presently, all consumers were served with 24hrs. supply. 

 

Design 

Criteria to be looked into for designing of DMA :- 

- Connection from 500 to 2000 

- Being fed through one feeder 

- Maintaining minimum residual head in the system 
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- Continuous supply of water 

- Boundary valve can be located and closed 

- Available valve for step testing or to install new 

Pressure survey for the  area including adjacent area to the DMA was to be 
carried out to have a better understanding of the pressure contour. Points 
of highest, lowest, nearest and furthest from feeder within DMA and 
adjacent to it, pressure loggers were installed  before any isolation being 
made. 

To complete establishing a DMA, activities below are to be carried out :- 

- Established schematic drawing  to the proposed DMA including site 
investigation  and verification. 

- Pressure Survey 

- Zero Pressure Testing 

- Legitimate Night Flow Sampling 

- T Factor Calculation 

- Initial Flow Measurement to record Peak Flow, Minimum Flow, Flow 
Trending and Background Leakage Level.  

All boundary valves after being confirmed their location and closed will be 
marked by painting their chambers in red. 

Electromagnetic flow meters were selected to be used for flow 
measurement for this project. Experience in using mechanical meter which 
gave high head loss during peak flow and choking up strainer with debris 
has put the usage of electromagnetic flow meter as a reliable and effective 
data capturing. Electromagnetic flow meter has been proved to be hassle 
free maintenance for the past decade since it was installed in Johore with 
the earlier version. 

Sizing of this meter was based on design demand for the maximum flow 
and the ability to record minimum flow. Minimum head loss through the 
meter was adapted to choose the suitable meter. Future demand was 
considered during the design process. 

As electromagnetic meter was maintenance free, it was buried 
underground with their communication cable installed inside a cabinet 
which was constructed above ground. Meter was installed online with the 
pipeline with both side connected using flange adaptor. No strainer was 
used as this meter on full bore. 

DMAs in use  

Meters were read monthly and consumption was averaged daily. Where 
there is increment of average daily consumption, leakage levels were 
calculated. For background leakage above 20%, manual logger was 
installed to record minimum night flow. 
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Nightline above 2.5lit/sec, leakage teams were deployed for leakage 
detection activities. For DMAs which have been installed permanent 
loggers, nightline were monitored daily. Flow and pressure data were 
conveyed daily through telemetry to the control room to be analyzed.  

Recorded flow data was transformed into Net Night Flow after deducting 
Legitimate Night Flow. This nightline was used to interpret background 
leakage which occurs in the DMA. Other components of Non Revenue 
Water were only being measured during Flow Balance activities. Flow 
Balance was one activity being carried out as a holistic approach to ensure 
volume of water produce from water treatment plant was accounted and 
this volume balanced throughout the system.  

DMA meters were read monthly and a table was produced to show their 
leakage level. Leakage level was prioritized based on their net night flow. 
Those DMAs which have NNF above 5lit/sec, leakage detection team will 
be deployed to carry out Visual Inspection Sounding. To pinpoint leaks, 
noise loggers and correlators were used either for the whole area or sub 
divided into smaller section. For areas, which after deploying teams for 
leakage detection  seem no reduction of leakage, step test will be carried 
out to reduce leakage at the targeted area. A comprehensive study should 
be made for this smaller areas to precisely determine the leakage level and 
their causes whether from the pressure, pipe material, age of pipe, soil 
condition, communication pipe, workmanship during installation and all 
related matters. A recommendation such as pipe replacement or reducing 
the incoming pressure should be made to overcome the leakage level for 
this particular sub area. 

DMA boundaries were check before doing step test. For monthly reading 
which gave anomalies reading, boundary valve were checked to make sure 
DMAs was getting supply from one feeder. Legitimate Night Flow should be 
carried out every 5 years or if there is any different in trending usage of 
water. 

Other than leakage control programme, in establishing a DMA, it also can 
provide water supply management such as :- 

 Assessing annual or monthly loss 

 Demand studies 

 Per capita consumption 

 Pressure Management 

 Trending Usage of Water 

 Customer Tagging 

 Pipeline rehabilitation programme 

 Daily monitoring pressure and flow 
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 Description of the project 

1 A brief description of the location (e.g., country/state; the population served, typical supply 
pressures; a brief description of the supply arrangements), the reasons for considering 
installing DMAs and the actual duration of the project from start of design to completion of 
functioning DMAs..  

 The Halifax Regional Water Commission is located in Halifax Nova Scotia, Canada 
and currently serves a population of 320,000 with an average supply pressure of 50 
meters.  Halifax is supplied by two large surface water treatment plants, a 180MLD 
plant serving the West Region and a 90 MLD plant serving the East Region. Halifax 
has a high natural rate of rise of water main breaks and with the construction of the 
new treatment plant serving the east region, and the corresponding increase in the 
marginal cost of water, it became a corporate priority to reduce real losses. 
Elevations in Halifax range from 170m ASL to sea level requiring many discrete 
pressures zones and pumping stations.  These pressure zones and pumping 
stations formed the earliest DMAs by simply installing flow meters at the control 
facilities. In 1999, with the knowledge that DMAs provide early indication of leakage, 
the HRWC implemented a program to create DMAs throughout the Utility. After six 
years, the program is nearing completion 

2 What was the level of real losses before and after installing DMAs in any or all of the 
following units: m3/yr, l/connection/day, litres/connection/day/m of pressure, ILI. 

 Annual real losses prior to full DMA implementation (1999) 18,055,000 m3. As of 
March 31, 2005, the annual real losses were  8,101,000 m3.  The first ILI was 
calculated at 6.4 in 1999/2000, as of March 31, 2005 it was at 3.8.  We expect a further 
reduction for 05/06 possibly 3.4 

3 Briefly describe the supply arrangements for typical households: whether there is storage 
in the household, and if so whether ground-level tanks and/or elevated tanks; whether 
typical connections are metered; the typical (or required) supply pressure at the point of 
delivery; whether supply is continuous everywhere in the area served.   

 The typical household has its own supply line with an average supply pressure of 50 
meters. There is no residential storage and the system is pressurised constantly.  
All service connections are metered with the water meter inside the household. 

 Design 

4 What influenced the design of individual DMAs? This could include: keeping similar pipe 
materials together; the target DMA size; water quality; number of boundary valves, fire 
fighting; insurance; reliability of supply; maintaining similar pressure (available head) 
across the whole DMA to facilitate pressure management etc.  

 Target size such that it can be sounded in one day. Fire flow requirements.  
Commercial industrial flow requirements.  Multiple or redundant feeds.  Water 
quality, and possible meter locations.  Location of large users. 

5 Was pressure management considered at the design stage? If so was it designed to cover 
all DMAs? If not how were decisions made on where to install pressure management? 

 We have just begun implementing flow modulated pressure management and will 
continue to apply it on a DMA by DMA basis considering Infrastructure Condition 
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Factor, re-break history, average pressure within the DMA, and cost to implement.   

6 The methods used for design. This could include what initial investigations and trials were 
made, and whether (and to what extent) network models were used.  

 The DMAs are designed on paper taking advantage of existing boundaries wherever 
possible.  Using the criteria identified in question 4; the DMAs are marked on the 
base mapping and submitted to engineering (in house) for review.  Whenever 
significant changes are required, the DMA is modelled to ensure adequate supply.  
The DMA is then set up as a temporary DMA and actual flow testing takes place and 
night flows are recorded using a temporary meter.   

7 Was a hierarchy of metered zones used: i.e. did the DMAs fit into larger metered zones, 
and were these larger zones installed as part of the same process, or did they already 
exist, and if so were they already metered? 

 There are situations where there is a hierarchy of metered zones and cascading 
zones, where the water from one DMA first passes through another.  In most cases, 
the larger zones existed as a result of required hydraulics and necessary 
boundaries. 

8 How was the integrity of the boundary tested? Was it by listening to valves, carrying out a 
pressure zero test on the whole DMA (where an area is isolated from the rest of the 
distribution system and the pressure monitored to ensure it drops to close to zero), carrying 
out a pressure-zero test on individual section of main next to the boundary, or some other 
testing method. 

 The DMA boundary is confirmed by closing all identified valves, leaving only  a 
single valve open to supply the DMA.  With pressure loggers installed along the 
boundary, outside of the DMA, the pressure within the DMA is reduced to 
minimums.  Flow and pressure in adjacent DMA are recorded through the SCADA 
systems and reviewed for any changes. The pressure loggers are reviewed to 
ensure there was no influence across boundaries.  With the pressure at minimums, 
all boundary valves are sounded. 

9 How were the boundaries of DMAs defined and managed? For example: are boundary 
valves closed and marked or are sections of pipe removed and the ends capped to 
produce permanent boundaries? 

 Once established, the boundary valves are entered into the GIS as closed valves and 
given a unique symbol identifying them on base mapping as such.  Markers are 
placed inside the valve box to ensure they are not accidentally operated. 

10 Do the new boundaries include flushing facilities?  

 Where water quality issues occur, fixed rate jumpers are installed across the 
boundary valve where the problem exists.  There are few of these.  There are also a 
few “blow offs” that are operated when necessary.  This water is discharged to the 
storm water collection system. 

11 Are any systems in place to ensure boundary valve operation is recorded? 

 All systems valves are checked and operated as part of a valve maintenance 
program; however, boundary valves are checked but not operated. 

12 How were meters were selected. This includes both the type of meter and the size 
selected. 

 At the HRWC, meter size and type are determined on a site by site basis, matching 
the performance characteristics and features of the meter, with the specific 
requirements of the site.  In-line magnetic flow meters are the preferred choice, 
however, strap on ultrasonic meters are considered on pipe larger than 200 mm, and 
in-line turbines are considered on bypass lines 100 mm and smaller.  In any case, 
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meters must be capable of interfacing with the HRWC SCADA system using either a 
pulse output or a digital protocol. 

Accuracy is a concern with all meters and when required, the meters are field 
calibrated. 

 

13 Describe a typical meter installation (i.e. is the meter on a bypass, what materials and 
jointing are used, where are the gate valves and hydrants, is the installation underground?) 
This may be most easily described with a diagram or photographs. 

 The HRWC has standardised DMA meter installation. Where pressure control is 
required, the meter is installed on the smaller bypass in line with a small PRV. A 
larger PRV is in parallel and supplies fire flows and any other exceptional 
demands... A limit switch on the larger PRV provides indication that it has opened. 
Where pressure control is not required, direct bury mag meters are installed in 
manholes with RTU panels mounted on nearby utility poles.  Pipe material is usually 
ductile iron within manholes and either ductile iron or stainless steel within PRV 
vaults. Meters are flanged with the exception of strap on ultrasonic meters.  Valves 
on each side of the meter provide isolation. With the exception of Pumping Stations, 
all meters are underground.  See accompanying photos. 
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14 How were night use allowances calculated for use in assessing leakage levels (if any) 

   Data Entry Defaults Calculated values  

        

Standard Parameters for Assessed Night Consumption 

  Household occupancy 3.00 persons per household  

  Night toilet use 6.0% of persons, 03 to 04 hrs  

  Average toilet cistern size 14.0 litres    

  Average night toilet use 2.52 Litres/household/hr  

  Assume 1.0% of Household toilet cisterns leak 

  Assume 2.5 Toilet cisterns per household 

  Assume a leaking cistern runs at 10.0 litres/hour average   

  Average toilet leakage 0.25 Litres/household/hr  

  
Other household leakage after 

meter 0.25 Litres/household/hr  

  Ave. Household night consumption 3.02 Litres/household/hr  

  
Ave. non-household night 

consumption 10.0 Litres/non-Household/hr  
 

 DMAs in use 
15 How is flow data collected from typical DMA? This includes the frequency of data collection, 

the data storage intervals, whether the data is stored in a logger and retrieved manually or 
via telemetry. Is pressure is recorded? 

 DMA meters are polled by our SCADA system at intervals that range from 45-90 
seconds.  The values are logged in a data historian every minute.  In almost all cases, 
both pressure and flow are recorded. 

16 How is flow data checked to ensure that it is valid? 

 Meters are calibrated on site by flowing water through a calibrated test meter and 
ensuring the two meters record the same flow.  This requires isolating the meter. 

17 Describe how the flow data is interpreted to assess the level of losses. Does this include both 
a night-flow measurement and a water balance? How are these reconciled? Is the IWA water 
balance used? If a water balance is used at DMA level, what period is it carried out over and 
does it include measurement of customer consumption over the same period? 

 HRWC applications automatically average the night flows between 03 and 04 hrs and 
compare this to the calculated minimum night flow (bottom up calculation) for each 
DMA.  ILI calculations for each DMA have not happened as yet, however, it is the intent 
as we align meter-reading routes with DMAs. 

18 Describe the process by which decisions are made on which DMAs are investigated by 
leakage control teams. This may include a prioritisation process. Include examples of the use 
of a prioritisation process, showing which performance indicators are used and which DMAs 
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were selected as a result. 

 Using the flow data in the data historian, an HRWC application posts to an intranet 
site, the five most recent actual averaged night flows (averaged between 03 and 04) 
and compares these values to the calculated minimum night flow for the particular 
DMAs.  Leak detection crews are sent to the DMAs with the highest levels of active 
leakage.  Pumped systems are given a further priority. 

19 What happens when DMAs are investigated by leakage control teams but the leakage is not 
reduced? 

 Leak crews are usually very successful in finding the leaks however when they do not 
find it after the first pass, a more aggressive and detailed approach is taken that 
includes listening on all valves and surface sounding gaps.  If this fails to yield 
results, the metering is confirmed and exceptional night use is investigated.  If leakage 
cannot be reduced with these methods, advanced pressure management is planned. 

20 Describe maintenance processes, such as DMA boundary checks, audits of DMA data, 
pressure logging, flushing. This should include whether at regular frequencies or in response 
to incidents. 

 System wide flushing occurs annually in the spring.  Pressure logging is a standard 
within each DMA.  Boundary valves are checked as part of a system wide valve 
program however they are not operated.  If a DMA is not functioning properly and 
leakage across valves is suspected, boundary valves will be sounded.   

21 Describe the other uses that you put DMAs to, such as: Assessing annual losses; Demand 
studies; Per capita consumption (PCC); Infrastructure condition factor (ICF); Planning; 
Performance monitoring; Monitoring costs; Natural rate of rise of leakage; Network analysis; 
Day to day running of network. 

 DMAs are used to determine the ICF, for demand studies and to calibrate or confirm 
the Hydraulic model.  Unauthorised withdrawal from fire hydrants is often identified 
(apparent loss).  Water used for capital work, system flushing and maintenance can be 
measured for accounting purposes.  System performance is monitored and necessary 
improvements identified. 

 Other aspects 

22 Is there any other aspect of the design, installation and use of DMAs that has been 
important, but has not been covered in the questions above? This could include particular 
problems and how they have been overcome 

 Positioning large customers at or near the extremities of the DMA can help with 
keeping the water fresh. In North America, the requirement to meet fire flows and the 
need for multiple feeds mean very low velocities in large mains, which make metering 
a challenge and therefore meter selection and location very important. 
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Abstract 
Jakarta, the capital city of Indonesia, loses around half of its water production from 
leaks in the pipes. The low operating pressures, non-metallic pipes and the high 
background noise make the application of acoustic instruments impossible. A step-by-
step approach, based on quantifying directly the leakage, was developed which proved 
very successful. 

The importance of pressure control to maintain a low leakage level in the network was 
highlighted. The application of a mathematical model was essential to design the 
permanent pressure and leakage control systems. 

 

Introduction 
Water is one of the world’s most valuable resources. Without it, life would not exist. It is 
predicted that within 20 years, almost a third of the world’s population will have 
insufficient supply of water. Yet in the light of such a drastic situation, it is surprising 
that many of the world’s water networks still lose around a half of the available 
resource through leakage from the pipes. Already the signs for the future are ominous. 
The closure at night of the network to fill the reservoir has become a routine operation 
in many parts of the world, from south and Central America, through Europe to Asia. In 
extreme cases, communities even go to war. Around two thirds of the world faces a 
potential crises. The challenge is to find an effective solution. 

With a rapidly increasing population, the situation is bound to get worse. The 
experience in Jakarta, the capital city of Indonesia, shows that the starting point to 
improving the situation is to use more efficiently the existing resource by drastically 
reducing the leakage in the water network. However there are many difficulties to 
overcome, not least to define the most appropriate approach when there is limited 
knowledge of the network and its characteristics are not compatible with the technology 
traditionally applied in more developed parts of the world. 

 

Situation in Jakarta 
Jakarta is a sprawling city of around 12 million inhabitants. The management of the 
network was privatised in two separate concessions towards the end of 1990’s. The 
project outlined in this paper relates to the part managed by Palyja, which is owned by 
the Suez Group. 
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Table of Co  Figure E-1 Typical conditions in Jakarta 

 

The water network extends for well over 3000 km. It is composed primarily of non-
metallic pipes varying in diameter from 1200 mm to 25 mm. The operating pressures 
rarely exceed 15 metres and usually are less than 10 metres. Some parts of the 
network, particularly at the extremity, have zero pressure for most of the day. Much of 
the network was constructed by contractors. As a result, many of the streets have four 
different pipes and the availability of accurate as-built plans is very limited. 
Furthermore, old networks have not always been abandoned when a newer network 
was constructed. Like in so many Asian cities, the traffic is noisy and seems to be 
perpetually grid-locked. Non Revenue Water (NRW) is equivalent to 46% of which over 
75% is Real or Technical losses. Due to the ground conditions and the fact that many 
of the roads have a concrete foundation, leaks seldom become visible. Almost all 
excavations are dug by hand. 
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Figure E-2 Excavation by hand 

 

 

The traditional approach for locating leaks is to use acoustic instruments such as 
correlators, noise loggers and ground microphones. However to be successful they 
require adequate pressure to generate a leak noise, good transmission of the noise 
along preferably metallic pipes, accurate mains records and low background noise. In 
Jakarta, all these characteristics are absent. As a result it was necessary to develop a 
totally different approach, which in some cases modifies the traditional way leakage is 
controlled and located. 

 

Technical approach 
The possibility of successfully locating a lost personal item is significantly increased if 
the search is directed to one particular room of a house, rather than a random search 
of the whole town. The same is true with leakage. By permanently dividing the network 
into a number of sectors, supplied by a few key mains, it is possible not only to 
immediately identify the presence of a leak, but also to locate it more easily. 
Consequently, the leakage teams are able to maintain the leakage at its minimum level 
by always working in the highest priority sectors. 
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Figure E-3 Permanent Areas in UPPS 

 

Such an approach is not new. The District Meter Area concept has been applied with 
much success in the UK and elsewhere. However, the same approach is not feasible in 
a situation like Jakarta because of the size, complexity and the lack of knowledge of 
the network. 

The main objective of a permanent control system is to continuously quantify the 
current leakage level and identify immediately the presence of a new leak. It is vital 
therefore that the boundaries of the sectors are tight. One way to ensure this is to use 
natural boundaries. It is also necessary to understand the existing hydraulic operation 
of the network. 

The closure of pipes to create the sector boundaries will tend to reduce the capacity of 
the network. In Jakarta such an approach, if not undertaken with care, could further 
reduce the already low operating pressures. However there are many pipes in the 
water network which have little or no hydraulic function as they represent hydraulic 
balance points. It follows therefore that their closure will have little or no effect on the 
operation of the network. The aim therefore when dividing any network is to identify 
such points. In Jakarta it was essential to do so. The answer is to use a hydraulic 
mathematical model. 

The mathematical model developed for Jakarta needed to be accurate enough to 
identify errors in the historical knowledge of the network and to understand its hydraulic 
operation. It contained all the pipes of 125 mm diameter or more, had an accurate 
allocation of the consumption. It was fully calibrated by comparing the calculated 
pressures and flows with those measured in the field during a field test. In fact, a 
number of anomalies were identified during the calibration of the model which were 
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later verified on site. The model was then used to optimise the division of the network 
into sectors termed Permanent Areas. Each was supplied by a maximum of 3 key 
pipes on which was installed a permanent flow meter. Valves were closed on the other 
connections to create the permanent boundary. Thanks to the application of the model, 
the number of closed valves was reduced to a minimum. 

 

Figure E-4. Mathematical model of Jakarta 

 

A total of 12 Permanent Areas were created in the pilot area comprising of around 
1200 km. The only difficulty experienced to create the boundaries was in the Blok M 
part of the network, which is very densely populated. The reason can be attributed to 
an inaccurate representation of the real network on the maps, and the exceptionally 
low operating pressures. Having created and quantified the leakage level in each 
Permanent Area it was possible to define an order of priority, where the activity of 
leakage location was directed. 

The most representative parameter to do this was found to be the leakage per unit 
length of main as it was simple to determine and gives a direct indication of the effort 
required to reduce the leakage level. 

Once the leakage level in a Permanent Area warrants intervention, the network is 
divided into what are termed Temporary District. They cover typically around 20 km of 
network and are supplied by a single pipe on which is installed an insertion flow meter. 
Even though their design was optimised with the mathematical model, it was still 
impractical with the existing pressures to permanently close the boundaries without 
creating supply problems. As a result, they were created for a week to allow the 
mentoring to be completed, hence the name Temporary Districts. In this way it is 
possible to narrow down further the part of the network with most leakage. In the future, 
once the leaks have been repaired these districts can become permanent, 
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The creation of the Temporary District requires a much more detailed knowledge of the 
network than with the Permanent Areas. A thorough investigation was necessary to 
verify the configuration of the network, which involved hydraulic testing and 
excavations. 

This is quite a time-consuming activity as many significant differences were identified 
between the maps and the reality. The advantage is that the work is undertaken only 
where strictly necessary. 

In those Temporary Districts with most leaks, which is typically around 40% of the 
Permanent Area, night step tests were performed during which the network was 
progressively isolated. The reduction in the flow following each closure corresponds to 
the leakage in the isolated network. In this way it is possible to define accurately the 
leaking pipes. 

A trial was performed using the acoustic instruments, which confirmed that the 
combination of low noise generation and poor propagation capacity renders these 
instruments practically useless. The best solution was therefore to abandon the leaky 
pipes and move the customer connections, which in Jakarta is possible in view of the 
large number of pipes in each street in Jakarta. Where this is not feasible, a cost / 
benefit analysis is undertaken to determine the economic effectiveness of replacing the 
pipe. 

The advantage of such a step by step approach is that the effort is directed only to 
those areas where the returns are maximised. This applies not just to locating the leaks 
but also to undertake hydraulic tests to understand the real layout of the network. 

 

Pressure control 
The objective of a permanent leakage control system is not just to reduce the leakage 
but also to enable a low leakage level to be maintained in the future. The approach 
developed for Jakarta proved highly successful in locating the leaks. However it soon 
became apparent that no sooner had a big leak been eliminated that another broke out. 
Figure E-5 shows the variation of the leakage level in one Permanent Area over an 18-
month period. The reason is pressure. 

 

Figure E-5. Variation in leakage level over time 
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In hydraulic theory, the discharge through an orifice in a pressure system follows the 
square root relationship: 

V = Cd�2gP 

Where: 

• V is the velocity of the water through the orifice, 

• Cd is the discharge coefficient, 

• g is gravity 

• P is the discharge pressure. 

Studies undertaken in Japan, Brazil and most notably in the UK has shown that the 
effective relationship is in fact more linear. Figure E-6 shows one of the relationships 
derived in the UK [This relationship has been superceded in the UK]. 

 

Figure E-6. Typical Pressure – Leakage relationship 

 

Although the benefits of lowering the pressure have been exploited in many parts of the 
world, it has tended to be applied at the top end of the curve where the pressures were 
excessively high. Less well appreciated is the positive impact that controlling pressure 
has on leakage even when the pressures are as low as they are in Jakarta. 

High leakage creates high flow, which increases the headloss and reduces the 
pressure. But when the leaks are repaired, the converse is true. The higher pressure 
causes a corresponding increase not just in the water lost from other smaller leaks but 
also in the risk of new leaks breaking out. This fact was verified in Jakarta and probably 
explains why the quantity recovered in the past following the replacement of pipes was 
much less than anticipated. With the creation of a pressure control system, the reduced 
headloss is automatically compensated for by the Pressure Reducing Valve (PRV). 

Although it was clear that the solution to the problem of recurring leakage in Jakarta 
was the pressure control, it was far from clear whether such a system would work when 
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the operating pressure are little more than 10 metres and where the minimum pressure 
hardly registers on a pressure gauge. Furthermore the creation of an efficient pressure 
control system requires a single supply, which avoids the potentially dangerous 
instability, which can result from having multiple supplies. This is even more important 
in a low-pressure network where the surges could cause the valve to close. But to 
create such a configuration is clearly much more delicate in a low-pressure system. 
This is where the use of a mathematical model is essential. 

A trial was undertaken in a pilot area of around 20 km. A high quality PRV of the same 
diameter as the inlet pipe was installed so as to minimise the headloss at peak flows. 
The results were very positive and showed that not only was the PRV capable of 
maintaining a constant downstream pressure, but that by lowering further the pressure, 
it was possible to reduce significantly the leakage. An electronic control unit acting on 
the PRVs pilot was installed to automatically lower the outlet pressure from 20:00 to 
05:00. 
 

Results 
The application of a step by step approach has proved very successful in the network 
of Jakarta. In the first Permanent Area analysed, the leakage level was reduced by 
over 60 l/s just by eliminating the large leaks as shown in Figure E-7 

 
Figure E-7. Repair of leak 

 

The size of the leaks identified was a surprise, considering the very low operating 
pressures. The reason can be attributed primarily to the pipe material and the poor 
workmanship, particularly regarding the end caps. It also showed that the leakage 
problem was caused mainly by a small number of large leaks and not a large number 
of small leaks as at first thought. Not only does this confirm the findings in similar cases 
in other parts of the world, but means that it is possible to obtain excellent results 
without an excessively large economic investment. 
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Furthermore, the installation of a pressure reducing valve enables the recovery to be 
maintained in future. In fact, with the application of an electronic controller, it was 
possible to lower the night leakage by a further 50%. 

These results are significant for the following reasons: 

• That it is possible to reduce leakage even in networks where the traditional 
acoustic technology cannot be applied; 

• That large leaks are possible also in low pressure networks; 

• That the low pressure is a consequence of the high leakage level; 

• That pressure control is essential to ensure that new leaks don’t break out 
following the repair of the existing leaks; 

• That significant gains can be achieved by reducing the night pressure even 
when the existing operating pressures are very low; 

• That typically only around 40% of the network has a serious leakage problem; 

• That just in the pilot area which covers a sixth of the network of Jakarta it is 
feasible to recover well over 300 l/s; 

• That the leakage recovered will enable the extremities of the network to receive 
a constant supply of water. 

In view of the success achieved with the application of the approach, it has been 
decided to extend the work to cover all of the 3000 km of network it manages. 

Conclusion 
Like many parts of the world, the network of Jakarta is very large, complex and loses 
around half of its water production through leaking pipes. It is constructed primarily of 
non-metallic pipes in densely populated streets and has extremely low operating 
pressures. As a result, it is not realistic to use the traditional acoustic instruments to 
locate the leaks. 

A step-by-step approach based on the direct measurement of the leak was developed 
which involves dividing the network into a number of Permanent Areas supplied by a 
few key mains on which are installed flow meters. These Areas are much larger than 
the more traditional District Meter Areas (DMA) as they cover around 100 km of 
network. But in the same way as a DMA, they serve to quantify regularly the leakage 
level and to identify the presence of new leaks. 

In those Permanent Areas where the specific leakage is high, the network is divided 
into Temporary Districts, each supplied by a single pipe in which is installed a 
temporary insertion flow meter. The districts are temporary as the creation of the 
boundary can cause localised pressure problems. In this way it is possible to pinpoint 
more accurately the part of the Permanent Area with most leakage where a night step 
test can be undertaken to identify the leaky pipes. These can then be replaced or 
abandoned depending on the local conditions. 

One of the difficulties in the Jakarta network is the inaccuracy of the mains records. 
When coupled to the very low operating pressures of 10 metres or less, this makes 
creating a permanent control system very difficult indeed. In Jakarta this was overcome 
by building calibrated mathematical models to identify the anomalies, which were then 
investigated fully in the field by undertaking hydraulic tests and selective excavations. 
This approach has proved very successful as over a third of the network managed by 
Palyja has already being divided into Permanent Areas with only minor difficulties. The 
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advantage of such an approach is that the long, difficult and tedious work of updating 
the mains records is undertaken only where it is strictly necessary. The Jakarta project 
has also showed that importance of controlling pressure even in networks where there 
is very little pressure in the first place. The importance of lowering pressure to reduce 
the amount of water lost in a burst has been understood for a long time. What is less 
well understood is that high leakage will cause low pressures. So when the leaks are 
repaired, the pressure will rise, increasing the risk of new leaks forming. The solution is 
the installation of a Pressure Reducing Valve, which will compensate automatically for 
the increase in pressure, thus ensuring that the lower leakage level can be maintained 
in the future. With the application of a PRV controller, it is possible to lower further the 
night pressure, with consequential lowering of the leakage. 

So successful has the Jakarta pilot project been, that it is currently being extended to 
cover all of the 3000 km of network managed by Palyja. Not only will this yield a 
significant reduction in the leakage level, but more importantly perhaps, enable the 
extremities of the network to receive a continuous supply of water. 

 


