Computational Fluid Dynamics Računska dinamika fluida

Dr. Nenad Filipović, vanr. prof.

Mašinski fakultet Univerzitet u Kragujevcu

Research associate Harvard University, USA

Januar 2008

NUMERIČKE METODE **REŠAVANJA STRUJANJA** VISKOZNOG NESTIŠLJIVOG FLUIDA **SA PRENOSOM TOPLOTE**

2.1 OSNOVNE JEDNAČINE U MEHANICI FLUIDA

Konstitutivna relacija za napon

$$\sigma_{ij} = -p\delta_{ij} + 2\mu e_{ij}$$

Za nestišljivi fluid

$$O\left(\frac{\partial v_i}{\partial t} + v_j v_{i,j}\right) = -p_{,i} + \mu v_{i,jj} + f_i^B$$

deformacije

Jednačina kontinuiteta

$$\frac{D\rho}{Dt} + \rho \frac{\partial v_i}{\partial x_i} = 0$$

Za nestišljivi fluid $v_{i,i} = 0$

Jednačina provođenja toplote

$$\rho c_p \left(\frac{\partial \theta}{\partial t} + v_i \theta_{,i} \right) = \left(k \theta_i \right)_{,i} + q^B$$

 $e_{ij} = \frac{1}{2} \left(v_{i,j} + v_{ji} \right)$

2.2 IMPLICITNE METODE REŠAVANJA STRUJANJA LAMINARNOG VISKOZNOG NESTIŠLJIVOG FLUIDA SA PRENOSOM TOPLOTE

2.2.1 Mešovita (brzine-pritisci) v-p formulacija

$$\rho\left(\frac{\partial v_i}{\partial t} + v_j v_{i,j}\right) = -p_{,i} + \mu v_{i,jj} + f_i^B \quad (2.2.8) \quad v_{i,i} = 0 \quad (2.2.2)$$

Primena Galerkinovog postupka

$$\rho \int_{V} H_{\alpha} \frac{\partial v_{i}}{\partial t} dV + \rho \int_{V} H_{\alpha} v_{j} v_{i,j} dV = -\int_{V} H_{\alpha} p_{,i} dV + \int_{V} \mu H_{\alpha} v_{i,j} dV + \int_{V} H_{\alpha} f_{i}^{B} dV \quad (2.2.9)$$

$$\int_{V} G_{\delta} v_{i,i} dV = 0 \quad (2.2.10)$$

Parcijalna integracija i prevođenje zapreminskog u površinski integral

$$\rho \int_{V} H_{\alpha} \frac{\partial v_{i}}{\partial t} dV + \rho \int_{V} H_{\alpha} v_{j} v_{i,j} dV - \int_{V} H_{\alpha,i} p dV + \int_{V} \mu H_{\alpha,j} v_{i,j} dV = \int_{V} H_{\alpha} f_{i}^{B} dV + \int_{S} H_{\alpha} \left(-p n_{i} + \mu v_{i,j} n_{j}\right) dS$$
(2.2.11)

$$v_i = H_{\alpha} v_{i\alpha} \quad p = G_{\delta} p_{\delta}$$
(2.2.11)

Prikaz tipa elementa i broja nepoznatih veličina po elementu

Tip	Broj ~vorova po elementu	Broj nepoznatih veli~ina po elementu	
eenena		Brzina	Pritisaka
2-D	4	4	1
	9	9	4
3-D	8	8	1
	21	21	8
	27	27	8

Matrični oblik jednačina

$$\begin{bmatrix} \mathbf{M}_{\mathbf{v}} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \dot{\mathbf{v}} \\ \dot{\mathbf{p}} \end{bmatrix} + \begin{bmatrix} \mathbf{K}_{\mathbf{v}\mathbf{v}} + \mathbf{K}_{\mu\mathbf{v}} & \mathbf{K}_{\mathbf{v}\mathbf{p}} \\ \mathbf{K}_{\mathbf{v}\mathbf{p}}^{\mathrm{T}} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{v} \\ \mathbf{p} \end{bmatrix} = \begin{bmatrix} \mathbf{R}_{\mathrm{B}} + \mathbf{R}_{\mathrm{S}} \\ \mathbf{0} \end{bmatrix}$$
(2.2.15)

Brzina i pritisak na kraju koraka

$${}^{t+\Delta t}v_{i\alpha} = {}^{t+\Delta t}v_{i\alpha}^{(m-1)} + \Delta v_{i\alpha}^{(m)} \qquad {}^{t+\Delta t}p_{\delta} = {}^{t+\Delta t}p_{\delta}^{(m-1)} + \Delta p_{\delta}^{(m)}$$

Inkrementalno-iterativne jednačine

$$\begin{bmatrix} \rho \frac{1}{\Delta t} \int_{V} H_{\alpha} H_{\beta} dV \left[\left(\Delta v_{\beta}^{(m)} \right) + \left[\rho \int_{V} H_{\alpha} H_{\gamma}^{t+\Delta t} v_{\beta}^{(m-1)} H_{\beta} dV \right] \left(\Delta v_{\beta}^{(m)} \right) + \left[\rho \int_{V} H_{\alpha} H_{\gamma}^{t+\Delta t} v_{\beta}^{(m-1)} H_{\beta} dV \right] \left(\Delta v_{\beta}^{(m)} \right) \\ \begin{bmatrix} \int_{V} \mu H_{\alpha} H_{\beta} dV \left[\left(\Delta v_{\beta}^{(m)} \right) - \left[\int_{V} H_{\alpha,i} G_{\delta} dV \right] \left(\Delta p_{\delta}^{(m)} \right) = \int_{V} H_{\alpha} f_{\beta}^{B} dV + \int_{S} H_{\alpha} \left(-pn_{i} + v_{i} n_{j} \right) dS - \\ \begin{bmatrix} \rho \frac{1}{\Delta t} \int_{V} H_{\alpha} H_{\beta} dV \right] \left(t + \Delta t v_{\beta}^{(m-1)} - t v_{\beta i} \right) - \left[\rho \int_{V} H_{\alpha} H_{\gamma}^{t+\Delta t} v_{\beta}^{(m-1)} H_{\beta} dV \right] \left(t + \Delta t v_{\beta}^{(m-1)} \right) - \left[\int_{V} \mu H_{\alpha,j} H_{\beta} dV \right] \left(t + \Delta t v_{\beta}^{(m-1)} \right) \\ \begin{bmatrix} \int_{V} H_{\alpha,i} G_{\delta} dV \end{bmatrix} \left(t + \Delta t p_{\delta}^{(m-1)} \right) \quad (2.2.26) \end{bmatrix}$$

$$\left[\int_{V} G_{\delta} H_{\alpha,i} dV\right] \left(\Delta v_{\alpha i}^{(m)}\right) = -\left[\int_{V} G_{\delta} H_{\alpha,i} dV\right] \left(t + \Delta t v_{\alpha i}^{(m-1)}\right)$$
(2.2.27)

Matrični oblik jednačina

$$\begin{bmatrix} \frac{1}{\Delta t} \mathbf{M}_{\mathbf{v}} + {}^{t+\Delta t} \mathbf{K}_{\mathbf{vv}}^{(m-1)} + {}^{t+\Delta t} \mathbf{K}_{\mu \mathbf{v}}^{(m-1)} + {}^{t+\Delta t} \mathbf{J}_{\mathbf{vv}}^{(m-1)} & \mathbf{K}_{\mathbf{vp}} \\ \mathbf{K}_{\mathbf{vp}}^{\mathbf{T}} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \Delta \mathbf{v}^{(m)} \\ \Delta \mathbf{p}^{(m)} \end{bmatrix} = \begin{bmatrix} {}^{t+\Delta t} \mathbf{F}_{\mathbf{v}}^{(m-1)} \\ {}^{t+\Delta t} \mathbf{F}_{\mathbf{p}}^{(m-1)} \end{bmatrix}$$
(2.2.28)

2.2.2 PENALTI formulacija za strujanje fluida

Navije-Stoksova jednačina

Uslov nestišljivosti

$$\rho\left(\frac{\partial v_i}{\partial t} + v_j v_{i,j}\right) = \lambda v_{jij} + \mu \left(v_{i,j} + v_{ji}\right)_{,j} + f_i^B \qquad (2.2.40)$$

 $v_{i,i} + \frac{p}{2} = 0$ (2.2.38)

Matrični oblik jednačine

$$\left(\frac{1}{\Delta t}\mathbf{M}_{\mathbf{v}}+^{t+\Delta t}\mathbf{K}_{\mathbf{vv}}^{(m-1)}+^{t+\Delta t}\mathbf{K}_{\mu\mathbf{v}}^{(m-1)}+^{t+\Delta t}\hat{\mathbf{K}}_{\mu\mathbf{v}}^{(m-1)}+^{t+\Delta t}\mathbf{J}_{\mathbf{vv}}^{(m-1)}+\mathbf{K}_{\lambda\mathbf{v}}\right)\Delta\mathbf{v}^{(m)}=^{t+\Delta t}\hat{\mathbf{F}}_{\mathbf{v}}^{(m-1)}$$
(2.2.41)

2.2.3 Mešovita (brzine-pritisci-temperature, v-p- θ) formulacija

$$\begin{bmatrix} \frac{1}{\Delta t} \mathbf{M}_{\mathbf{v}} + {}^{t+\Delta t} \mathbf{K}_{\mathbf{vv}}^{(m-1)} + {}^{t+\Delta t} \mathbf{K}_{\mu \mathbf{v}}^{(m-1)} + {}^{t+\Delta t} \mathbf{J}_{\mathbf{vv}}^{(m-1)} & \mathbf{K}_{\mathbf{vp}} & \mathbf{0} \\ \mathbf{K}_{\mathbf{vp}}^{\mathbf{T}} & \mathbf{0} & \mathbf{0} \\ {}^{t+\Delta t} \mathbf{K}_{\theta \nu}^{(m-1)} & \mathbf{0} & \frac{1}{\Delta t} \mathbf{M}_{\theta} + {}^{t+\Delta t} \mathbf{K}_{\theta \theta}^{(m-1)} + {}^{t+\Delta t} \mathbf{J}_{\theta \theta}^{(m-1)} \end{bmatrix} \begin{bmatrix} \Delta \mathbf{v}^{(m)} \\ \Delta \mathbf{p}^{(m)} \\ \Delta \theta^{(m)} \end{bmatrix} = \begin{bmatrix} {}^{t+\Delta t} \mathbf{F}_{\mathbf{v}}^{(m-1)} \\ {}^{t+\Delta t} \mathbf{F}_{\theta}^{(m-1)} \\ {}^{t+\Delta t} \mathbf{F}_{\theta}^{(m-1)} \end{bmatrix}$$
(2.2.64)

2.2.4 PENALTI formulacija za strujanje fluida sa prenosom toplote

$$\begin{bmatrix} \frac{1}{\Delta t} \mathbf{M}_{\mathbf{v}} + {}^{t+\Delta t} \mathbf{K}_{\mathbf{vv}}^{(m-1)} + {}^{t+\Delta t} \mathbf{K}_{\mu \mathbf{v}}^{(m-1)} + \mathbf{K}_{\mu \mathbf{v}} \\ {}^{t+\Delta t} \hat{\mathbf{K}}_{\mu \mathbf{v}}^{(m-1)} + {}^{t+\Delta t} \mathbf{J}_{\mathbf{vv}}^{(m-1)} + \mathbf{K}_{\lambda \mathbf{v}} \\ {}^{t+\Delta t} \mathbf{K}_{\theta \nu}^{(m-1)} & \frac{1}{\Delta t} \mathbf{M}_{\theta} + {}^{t+\Delta t} \mathbf{K}_{\theta \theta}^{(m-1)} + {}^{t+\Delta t} \mathbf{J}_{\theta \theta}^{(m-1)} \end{bmatrix} \begin{bmatrix} \Delta \mathbf{v}^{(m)} \\ \Delta \theta^{(m)} \end{bmatrix} = \begin{bmatrix} {}^{t+\Delta t} \hat{\mathbf{F}}_{\mathbf{v}}^{(m-1)} \\ \Delta \theta^{(m)} \end{bmatrix}$$
(2.2.65)

Tipovi elemenata za 2D i 3D analizu

2D/4, v-4, p-1, θ-4

2D/9, v-9, p-4, θ-9

Brzina fluida•Pritiak fluidaImage: Image: Image:

3D/8, v-8, p-1, θ-8

3D/21, v-21, p-8, θ-21 3

3D/27, v-27, p-8, θ-27

2.3 EKSPLICITNA METODA IZ DVA KORAKA

$$\begin{aligned} \begin{array}{ll} \mbox{Jednačina} & \frac{\partial \rho}{\partial t} + (\rho v_i)_{,i} = 0 \quad \mbox{(2.3.1)} & \mbox{Navije-Stoksova jednačina} \quad \rho \Big(\frac{\partial v_i}{\partial t} + v y_{i,j} \Big) + p_{,i} - \mu \big(v_{i,j} + v_{ji} \big)_{,i} - \rho f_i^{\ \ B} = 0 \\ \mbox{(2.3.2)} \end{aligned} \\ \begin{array}{ll} \mbox{Jednačina stanja} & p = p(\rho) \quad \mbox{(2.3.3)} & \mbox{Brzina zvuka} & c^2 = \frac{\partial p}{\partial \rho} \quad \mbox{(2.3.4)} \end{aligned} \\ \begin{array}{ll} \mbox{Jednačina kontinuiteta} & \quad \mbox{$\frac{\partial p}{\partial t} + v_i p_{,i} + \rho c^2 v_{i,j} = 0 \\ \mbox{(2.3.6)} & \mbox{Mavije-Stoksova jednačina u matričnom obliku} & \mbox{M}_{\mathbf{v}} \dot{\mathbf{v}} + \mathbf{K}_{\mathbf{vp}} \mathbf{p} - \mathbf{F}_{\mathbf{B}} - \mathbf{F}_{\mathbf{S}} = \mathbf{0} \quad \mbox{(2.3.8)} \end{aligned} \\ \begin{array}{ll} \mbox{Jednačina kontinuiteta} & \quad \mbox{$\frac{\partial p}{\partial t} + v_i p_{,i} + \rho c^2 v_{i,j} = 0 \\ \mbox{Jednačina kontinuiteta} & \mbox{$\frac{\partial p}{\partial t} + v_i p_{,i} + \rho c^2 v_{i,j} = 0 \\ \mbox{Jednačina u matričnom obliku} & \mbox{M}_{\mathbf{v}} \dot{\mathbf{v}} + \mathbf{K}_{\mathbf{vp}} \mathbf{p} - \mathbf{F}_{\mathbf{B}} - \mathbf{F}_{\mathbf{S}} = \mathbf{0} \quad \mbox{(2.3.8)} \end{aligned} \\ \begin{array}{ll} \mbox{Jednačina kontinuiteta} & \mbox{matričnom obliku} & \mbox{M}_{\mathbf{p}} \dot{\mathbf{p}} + \mathbf{K}_{\mathbf{pv}} \mathbf{v} + \mathbf{K}_{\mathbf{pp}} \mathbf{p} = \mathbf{0} \end{array} \\ \begin{array}{ll} \mbox{Selektivna 'lumping' dvo-kora~na eksplicitna šema} \end{array} \\ \begin{array}{ll} \mbox{M}_{\mathbf{v}} \mathbf{v}^{n+1/2} = \mbox{M}_{\mathbf{v}} \mathbf{v}^n - \frac{\Delta t}{2} \left(\mathbf{K}_{\mathbf{pv}} \mathbf{v}^n + \mathbf{K}_{\mathbf{vp}} \mathbf{p}^n - \mathbf{F}_{\mathbf{B}}^n - \mathbf{F}_{\mathbf{S}}^n \right) \end{aligned} \\ \begin{array}{ll} \mbox{Prvi korak} & \mbox{M}_{\mathbf{p}} \mathbf{p}^{n+1/2} = \mbox{M}_{\mathbf{p}} \mathbf{v}^n - \Delta t \left(\mathbf{K}_{\mathbf{pv}} \mathbf{v}^{n+1/2} + \mathbf{K}_{\mathbf{vp}} \mathbf{p}^{n+1/2} - \mathbf{F}_{\mathbf{B}}^n - \mathbf{F}_{\mathbf{S}}^{n+1/2} \right) \end{aligned} \\ \begin{array}{ll} \mbox{Drugi korak} & \mbox{M}_{\mathbf{p}} \mathbf{p}^{n+1} = \mbox{M}_{\mathbf{p}} \mathbf{p}^n - \Delta t \left(\mathbf{K}_{\mathbf{pv}} \mathbf{v}^{n+1/2} + \mathbf{K}_{\mathbf{pp}} \mathbf{p}^{n+1/2} \right) = \mathbf{0} \end{aligned} \\ \begin{array}{ll} \mbox{(2.3.14)} \end{array} \end{array} \end{array}$$

ng' parametar e
$$\widetilde{\mathbf{M}}_{\mathbf{p}} = e \overline{\mathbf{M}}_{\mathbf{p}} + (1-e) \mathbf{M}_{\mathbf{p}}$$

(2.3.15)

Selektivni 'lumping' parametar e

2.4 EKSPLICITNO-IMPLICITNA TRO-STEPENA METODA ZA REŠAVANJE STRUJANJA FLUIDA

Trostepena šema

$$\frac{v_{i}^{n+1/3} - v_{i}^{n}}{\Delta t/3} = -v_{j}^{n}v_{i,j}^{n} - \frac{p_{,i}^{n}}{\rho} + v\left(v_{i,j}^{n} + v_{ji}^{n}\right)_{j} + f_{i}^{n} \qquad (2.4.3)$$

$$\frac{v_{i}^{n+1/2} - v_{i}^{n}}{\Delta t/2} = -v_{j}^{n+1/3}v_{i,j}^{n+1/3} - \frac{p_{,i}^{n}}{\rho} + v\left(v_{i,j}^{n+1/3} + v_{ji}^{n+1/3}\right)_{j} + f_{i}^{n+1/3} \qquad (2.4.4)$$

$$\frac{v_{i}^{n+1} - v_{i}^{n}}{\Delta t} = -v_{j}^{n+1/2}v_{i,j}^{n+1/2} - \frac{p_{,i}^{n+1}}{\rho} + v\left(v_{i,j}^{n+1/2} + v_{ji}^{n+1/2}\right)_{j} + f_{i}^{n+1/2} \qquad (2.4.5)$$

Primena Galerkina

$$\frac{1}{\rho} \int_{V} H_{\alpha,i} p_{,i}^{n+!} dV = -\frac{1}{\Delta t} \int_{V} H_{\alpha} v_{i,i}^{n} dV - \int_{V} H_{\alpha,i} v_{j}^{n+1/2} v_{i,j}^{n+1/2} dV + \int_{V} H_{\alpha,i} f_{i}^{n+1/2} dV - \int_{S} H_{\alpha} \left(\frac{v_{i}^{n+1} - v_{i}^{n}}{\Delta t} \right) n_{i} dS$$
(2.4.10)

Algoritam rešavanja

{**N**

$$\overline{\mathbf{I}}\left\{\left\{\mathbf{v}^{n+1/3}\right\} = \left\{\left\{\overline{\mathbf{M}}\right\}\left\{\mathbf{v}^{n}\right\} + \frac{\Delta t}{3}\left(\mathbf{F}_{\mathbf{p}}^{n} + \mathbf{F}_{\nu}^{n} + \mathbf{F}_{\mathbf{B}}^{n} + \mathbf{F}_{\mathbf{S}}^{n}\right)\right\}\right\}$$
(2.4.13)

$$\left\{ \overline{\mathbf{M}} \right\} \left\{ \mathbf{v}^{n+1/2} \right\} = \left\{ \left\{ \overline{\mathbf{M}} \right\} \left\{ \mathbf{v}^n \right\} + \frac{\Delta t}{2} \left(\mathbf{F}_{\mathbf{p}}^n + \mathbf{F}_{\mathbf{v}}^{n+1/3} + \mathbf{F}_{\mathbf{B}}^{n+1/3} + \mathbf{F}_{\mathbf{S}}^{n+1/3} \right) \right\}$$
(2.4.13)

$$[\mathbf{K}_{\mathbf{p}\mathbf{p}}][\mathbf{p}^{n+1}] = \{\mathbf{F}_{\mathbf{p}}^{n} + \mathbf{F}_{\mathbf{p}}^{n+1/2}\}$$
(2.4.11)

$$\left[\left\{\overline{\mathbf{M}}\right\}\left\{\mathbf{v}^{n+1}\right\} = \left\{\left\{\overline{\mathbf{M}}\right\}\left\{\mathbf{v}^{n}\right\} + \frac{\Delta t}{3}\left(\mathbf{F}_{\mathbf{p}}^{n+1} + \mathbf{F}_{\nu}^{n+1/2} + \mathbf{F}_{\mathbf{B}}^{n+1/2} + \mathbf{F}_{\mathbf{S}}^{n+1/2}\right)\right\}\right\}$$
(2.4.16)

2.5 PRIMENA "UPWIND" TEHNIKE NA KONVEKTIVNO DOMINANTNA STRUJANJA FLUIDA

2.5.3 Streamline UPWIND Petrov-Galerkin metoda

Tenzor veštačke diuzivnosti
$$\bar{k}_{ij} = \bar{k}\hat{u}_i\hat{u}_j$$
 (2.5.12) gde je $\hat{u}_i = \frac{u_i}{\|\mathbf{u}\|}$
Korigovane interpolacijske funkcije $\bar{h} = h + \bar{k}\hat{u}h_i \frac{1}{\|\mathbf{u}\|}$ (2.5.18)
Grafička interpretacija
 $\bar{k} = (\xi u_{\xi}h_{\xi} + \eta u_{\eta}h_{\eta})/2$ (2.5.19)
 $\xi = (\cot \alpha_{\xi}) - 1/\alpha_{\xi}$ $\eta = (\cot \alpha_{\eta}) - 1/\alpha_{\eta}$
 $\alpha_{\xi} = u_{\xi}h_{\xi}/(2k)$ $\alpha_{\eta} = u_{\eta}h_{\eta}/(2k)$ (2.5.20)
 $u_{\xi} = \mathbf{e}_{\xi} \cdot \mathbf{u}$ $u_{\eta} = \mathbf{e}_{\eta} \cdot \mathbf{u}$

 $\rightarrow x_1$

2.6 TEJLOR-GALERKINOVA METODA ZA NESTACIONARNE KONVEKTIVNO-DIFUZNE PROBLEME

Burgerova viskozna 1D jednačina

$$\rho \left(\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} \right) = \mu \frac{\partial^2 u}{\partial x^2} \quad (2.6.1)$$

Tejlorov red
$$u^{n+1} = u^n + \frac{\partial u^n}{\partial t} \Delta t + \frac{1}{2!} \frac{\partial^2 u^n}{\partial t^2} (\Delta t)^2 + O(\Delta t)^3$$
 (2.6.2)

Inkrementalna jedna~ina sa stabilizacionim delom

$$\frac{u^{n+1}-u^n}{\Delta t} = \left(-u^n \frac{\partial u^n}{\partial x} + \frac{\mu}{\rho} \frac{\partial^2 u^n}{\partial x^2}\right) + \frac{\Delta t}{2} \left[-u^n \frac{\partial}{\partial x} \left(-u^n \frac{\partial u^n}{\partial x} + \frac{\mu}{\rho} \frac{\partial^2 u^n}{\partial x^2}\right) + \frac{\mu}{\rho} \frac{\partial^2}{\partial x^2} \left(\frac{u^{n+1}-u^n}{\Delta t}\right)\right]$$
(2.6.7)

2.7 STABILNOST DVOSTEPENE LAX-WENDROFF I TROSTEPENE METODE

Dvostepena Lax-Wendrof-ova metoda

Trostepena stabilizaciona metoda

$$f(t + \Delta t/2) = f(t) + \frac{\Delta t}{2} \frac{\partial f(t)}{\partial t}$$

$$f(t + \Delta t) = f(t) + \Delta t \frac{\partial f(t + \Delta t/2)}{\partial t}$$
(2.7.4)

$$f(t + \Delta t/3) = f(t) + \frac{\Delta t}{3} \frac{\partial f(t)}{\partial t}$$

$$f(t + \Delta t/2) = f(t) + \frac{\Delta t}{2} \frac{\partial f(t + \Delta t/3)}{\partial t} \quad (2.7.5)$$

$$f(t + \Delta t) = f(t) + \Delta t \frac{\partial f(t + \Delta t/2)}{\partial t}$$

Uporedni prikaz zauzetosti memorije i trajanja proračuna

Metoda 1 : Mešovita formulacija (9/4 element), implicitna metoda Metoda 2 : Penalti formulacija (4/1 element), implicitna metoda Metoda 3 : Čisto eksplicitna metoda (4/4 element) Metoda 4 : Eksplicitno-implicitna metoda (4/4 element)

2.8.2 Stacionarno ravansko strujanje fluida kroz kanal sa proširenjem

Legenda	Broj koraka	Zauzetost memorije	Trajanje prora~una
Metoda1	1	2.4Mba	40 sekundi
Metoda2	1	1.05M ba	5 sekundi
Metoda3	7000, ∆t= 4 x10 ⁻⁵	0.04M ba	7654 sekundi
Metoda4	500, ∆t= 6 x10 ⁻⁴	0.5M ba	1000 sekudni

Polja pritiska fluida

2.8.3 Strujanje fluida u šupljini pri zadatoj brzini na jednoj stranici

Metoda 2

Metoda 3

Metoda 4

Strujnice u pokretnoj šupljini pri R_e=400

Metoda 1

Metoda 2

Metoda 3

Metoda 4

Strujnice u pokretnoj šupljini pri R_e=1000

Metoda 1

Metoda 2

Metoda 3

Metoda 4

Raspored pritiska u pokretnoj šupljini pri R_e=400

Metoda 3

Metoda 4

Rapored pritiska u pokretnoj šupljini pri R_e=1000

Polja pritiska sa elevacijama u pokretnoj šupljini pri R_e=1000

Dijagrami raspodele horizontalne brzine za x=a/2 pri R_e=400

Dijagrami raspodele horizontalne brzine za x=a/2 pri R_e=1000

Dijagrami raspodele pritiska za x=a/2 pri R_e=400

Dijagrami raspodele pritiska za x=a/2 pri R_e=1000

Pritisak fluida

Dijagrami raspodele vertikalne brzine za x=a/2 pri R_e=400

Dijagrami raspodele vertikalne brzine za x=a/2 pri R_e=1000

2.8.4 Opstrujavanje cilindra

- 'Karman vortex street' vrtlozi
- PENALTI metoda sa UPWIND stabilizacionom tehnikom

Polje brzine fluida pri opstrujavanju cilindra za t=12 s

Polje brzine fluida pri opstrujavanju cilindra za t=48 s

Polje brzine fluida pri opstrujavanju cilindra za t=96 s

Polje brzine fluida pri opstrujavanju cilindra za t=98 s

Polje brzine fluida pri opstrujavanju cilindra za t=102 s

Polje brzine fluida pri opstrujavanju cilindra za t=104 s

Polje brzine fluida pri opstrujavanju cilindra za t=106 s

Polje brzine fluida pri opstrujavanju cilindra za t=132 s

SOLID-FLUID INTERAKCIJA

4.2 OSNOVNE JEDNAČINE SPREZANJA

Inkrementalno-iterativni oblik diferencijalne jedna~ine kretanja nelinearne strukture

$$\mathbf{M}^{t+\Delta t} \ddot{\mathbf{U}}^{(i)} + \mathbf{C} \Delta \dot{\mathbf{U}}^{(i-1)} + {}^{t+\Delta t} \mathbf{K}^{(i-1)} \Delta \mathbf{U}^{(i)} = {}^{t+\Delta t} \mathbf{F}_{s} - \mathbf{C}^{t+\Delta t} \dot{\mathbf{U}}^{(i-1)} - {}^{t+\Delta t} \mathbf{F}^{(i-1)}$$
(4.2.2)

Definisanje ukupnog vektora brzina i ukupnog pomeranja

$$\mathbf{\dot{U}}^{(i)} = {}^{t} \mathbf{\dot{U}} + {}^{t} \Delta \mathbf{\dot{U}}^{(i-1)} + \Delta \mathbf{\dot{U}}^{(i)} = {}^{t+\Delta t} \mathbf{\dot{U}}^{(i-1)} + \Delta \mathbf{\dot{U}}^{(i)}$$

$$\mathbf{\dot{U}}^{(i)} = {}^{t+\Delta t} \mathbf{U}^{(i-1)} + \Delta \mathbf{U}^{(i)}$$

$$(4.2.3)$$

Jedna~ina solida po nepoznatim brzinama

$$^{t+\Delta t} \hat{\mathbf{C}}^{(i-1)} \Delta \dot{\mathbf{U}}^{(i)} = {}^{t+\Delta t} \hat{\mathbf{F}}_{s}^{(i-1)}$$
(4.2.9)

$$^{t+\Delta t} \hat{\mathbf{C}}^{(i-1)} = b_0 \mathbf{M} + \mathbf{C} + b_1^{t+\Delta t} \mathbf{K}^{(i-1)}$$
 (4.2.10)

$$\hat{\mathbf{F}}_{s}^{(i-1)} = {}^{t+\Delta t} \hat{\mathbf{F}}_{s} - \mathbf{M}^{t+\Delta t} \hat{\ddot{\mathbf{U}}}^{(i-1)} - \mathbf{C}^{t+\Delta t} \dot{\mathbf{U}}^{(i-1)} - {}^{t+\Delta t} \mathbf{K}^{(i-1)t+\Delta t} \mathbf{U}^{(i-1)} - {}^{t+\Delta t} \mathbf{F}^{(i-1)}$$

$$(4.2.11)$$

$$^{t+\Delta t} \hat{\mathbf{U}}^{(i-1)} = b_0 \left({}^{t+\Delta t} \, \dot{\mathbf{U}}^{(i-1)} - {}^t \dot{\mathbf{U}} \right) + b_2 {}^t \ddot{\mathbf{U}}$$
 (4.2.12)

$$^{t+\Delta t}\mathbf{U}^{(i-1)} = {}^{t}\mathbf{U} + b_{3}{}^{t}\dot{\mathbf{U}} + b_{4}{}^{t}\ddot{\mathbf{U}} + b_{5}{}^{t+\Delta t}\dot{\mathbf{U}}^{(i-1)}$$
 (4.2.13)

Posle postizanja konvergencije ukupni vektori ubrzanja i pomeranja se ra~unaju prema jedna~inama

Sistem jedna~ina za solid

Sistem jedna~ina za fluid

$$^{t+\Delta t}\ddot{\mathbf{U}}^{(i)} = b_0 \left({}^{t+\Delta t}\dot{\mathbf{U}}^{(i)} - {}^t\dot{\mathbf{U}} \right) + b_2{}^t\ddot{\mathbf{U}}$$
 (4.2.14)

$$^{t+\Delta t}\mathbf{U}^{(i)} = {}^{t}\mathbf{U} + b_{6}{}^{t}\dot{\mathbf{U}} + b_{7}{}^{t}\ddot{\mathbf{U}} + b_{8}{}^{t+\Delta t}\ddot{\mathbf{U}}^{(i)}$$
 (4.2.15)

$$\begin{bmatrix} \mathbf{K}_{vf-f}^{s} & \mathbf{K}_{vf-s}^{s} \\ \mathbf{K}_{vs-f}^{s} & \mathbf{K}_{vs-s}^{s} \end{bmatrix} \begin{bmatrix} \Delta \mathbf{v}_{sf} \\ \Delta \mathbf{v}_{ss} \end{bmatrix} = \begin{bmatrix} \mathbf{f}_{sf} \\ \mathbf{f}_{ss} \end{bmatrix} + \begin{bmatrix} \mathbf{\tilde{f}}_{fs} \\ \mathbf{0} \end{bmatrix}$$
(4.2.19)

Spregnuti sistem jedna~ina

$$\begin{bmatrix} \mathbf{K} & p_{s-p} & \mathbf{K} & p_{f-p} & \mathbf{0} \end{bmatrix} (\mathbf{V} & \mathbf{V} & (\mathbf{V})^{T} \\ \mathbf{K}^{f}_{vs-s} + \mathbf{K}^{s}_{vf-f} & \mathbf{K}^{f}_{ps-p} & \mathbf{K}^{s}_{ps-p} & \mathbf{K}^{s}_{vf-s} \\ \mathbf{K}^{f}_{vf-s} & \mathbf{K}^{f}_{vf-f} & \mathbf{K}^{f}_{pf-p} & \mathbf{0} \\ \mathbf{K}^{Tf}_{ps-p} & \mathbf{K}^{Tf}_{pf-p} & \mathbf{0} & \mathbf{0} \\ \mathbf{K}^{s}_{vs-f} & \mathbf{0} & \mathbf{0} & \mathbf{K}^{f}_{vs-s} \end{bmatrix} \begin{bmatrix} \Delta \mathbf{v}_{fs} \\ \Delta \mathbf{v}_{fs} \\ \Delta \mathbf{v}_{ff} \\ \Delta p \\ \Delta \mathbf{v}_{s} \end{bmatrix} = \begin{pmatrix} \mathbf{f}_{\mathbf{v}_{fs}} + \mathbf{f}_{sf} \\ \mathbf{f}_{r}_{f} \\ \mathbf{f}_{p} \\ \mathbf{f}_{ss} \end{bmatrix} + \begin{pmatrix} \mathbf{0} \\ \mathbf{f}_{fs} \\ \mathbf{0} \\ \mathbf{0} \end{pmatrix}$$

(4.2.21)

4.4 SLABO SPREZANJE

Razmena informacija za re{avanje problema solid-fluid interakcije

4.4.1 Eksplicitno sprezanje

4.4.2 Implicitno sprezanje

- Inicijalizuju se refenja za CFD i CSD 1.
- Startuje se globalna vremenska petlja 2.
- Inicipalizuju se nepoznate veli~ine za vreme n+ 1: $\mathbf{x}_0^{n+1} = \mathbf{x}^n$, $\mathbf{v}_0^{n+1} = \mathbf{v}^n$ i $p^{n+1} = p^n$ 3.
- 4. i = i + 1
- **5.** CSD prediktor: $\widetilde{\mathbf{x}}_{i}^{n+1}, \widetilde{\mathbf{v}}_{i}^{n+1} = f(p_{i-1}^{n})$
- Prenesu se pretpostavljeni polo`aji i brzine ta~aka na zajedni~kim povr{inama **6**.
- 7. CFD prediktor: $\widetilde{p}_i^{n+1} = f(\widetilde{\mathbf{x}}_i^{n+1}, \widetilde{\mathbf{v}}_i^{n+1})$
- Prenesu se pretpostavljenja optere}enja od fluida 8.
- **9.** CSD korektor: \mathbf{X}_{i}^{n+1} , $\mathbf{v}_{i}^{n+1} = f(\widetilde{p}_{i}^{n+1})$
- 10. Prenesu se korigovani polo`ji i brzine ta~aka na zajedni~kim povr{inama 11. CFD korektor: $p_i^{n+1} = f(\mathbf{x}_i^{n+1}, \mathbf{v}_i^{n+1})$
- 12. Prenesu se optere}enja od fluida
- 13. Ako refenje nije konvergiralo, vratiti se na korak 4 (na slede) u iteraciju)
- 14. Kraj globalne petlje: vratiti se na korak 2 (na slede) i vremenski korak)

Kriterijum konvergencije

$$\left\|\mathbf{x}_{i}^{n+1} - \mathbf{x}_{i-1}^{n+1}\right\| < \varepsilon \text{ AND } \left\|\mathbf{v}_{i}^{n+1} - \mathbf{v}_{i-1}^{n+1}\right\| < \varepsilon \text{ AND } \left\|p_{i}^{n+1} - p_{i-1}^{n+1}\right\| < \varepsilon$$

4.5.1 Strujanje fluida u kolapsibilnim cevima

Pritisci fluida u deformisanoj cevi za vreme dejstva pozitivnog transmuralnog pritiska

Polje efektivnog napona na zidovima cevi za vreme dejstva pozitivnog transmuralnog pritiska

Deformisana cev na kraju procesa propadanja

Dijagram pritiska duž aksijalne ose kolapsibilne cevi

Polje pritisaka fluida u kolapsibilnoj cev

Polje napona na zidovima kolapsabilne cevi

0.000E+0	
3.239E-6	
6.478E-6	
9.717E-6	
1.296E-5	
1.620E-5	
1.943E-5	
2.267E-5	
2.591E-5	
2.915E-5	
2.320E 0	
J.6J7E-J	

Smičući naponi na zidovima cevi u početnom trenutku vremena

0.000E+	0
2.780E-	5
5.561E-	5
8.341E-	5
1.112E-	4
1.390E-	4
1.668E-	4
1.946E-	4
2.224E-	4
2 502F-	4
2.780E-	4

Smičući naponi na zidovima cevi kada je došlo do kolapsa cevi

Radijalno pomeranje tačke na bezdimenzijskom aksijalnom rastojanju Y=7.4 u funkciji spoljašnjeg pritiska p_{ext}

6. FIZIOLO[KA STRUJANJA U RESPIRATORNOM SISTEMU

Šematski prikaz respiratornog sistema

6.3.1 Inspirativno i ekspirativno strujanje u modelu bifurkacije respiratornog sistema

6.3.1a Inspirativno strujanje

Vektorsko polje brzina u bifurkacionoj ravni za stacionarno inspiratorno strujanje skalirano u odnosu na maksimalnu brzinu od 16.7 cm/s

Profili aksijalne brzine u bifurkacionoj ravni za stacionarno inspiratorno strujanje

3-D prikaz aksijalne brzine u bifurkacionoj ravni za stacionarno inspiratorno strujanje

Presek 15

Vektorski prikaz polja radijalne brzine u bifurkacionoj ravni za stacionarno inspiratorno strujanje; skalirano u odnosu na maksimalnu brzinu 3.17 cm/s

Presek 5

Presek 10

Presek 15

Polje pritisaka u 3-D modelu bifurkacije za stacionarno inspiratorno strujanje

Polje smičućih napona u 3-D modelu bifurkacije za stacionarno inspiratorno strujanje

Vektorsko polje smičućih napona u 3-D modelu bifurkacije za stacionarno inspiratorno strujanje

Numerički i eksperimentalni rezultati za aksijalnu brzinu u preseku 15 u bifurkacionoj ravni za stacionarno inspiratorno strujanje

Numerički i eksperimentalni rezultati za radijalnu brzinu u preseku 15 u bifurkacionoj ravni za stacionarno inspiratorno strujanje

Numerički i eksperimentalni rezultati za radijalnu brzinu u preseku 15 u vertikalnoj ravni za stacionarno inspiratorno strujanje

Numeri~kih i eksperimentalni rezultati za azimutnu brzinu u preseku 15 u vertikalnoj ravni za stacionarno inspiratorno strujanje

6.3.1.b Ekspiratorno strujanje

Vektorsko polje brzine u bifurkacionoj ravni za stacionarno ekspiratorno strujanje

Profili polja brzine u bifurkacionoj ravni za stacionarno ekspiratorno strujanje

Polje pritiska u 3-D modelu bifurkacije za stacionarno ekspiratorno strujanje

Polje smičućih napona na 3-D modelu bifurkacije za stacionarno ekspiratorno strujanje

Vektorsko polje smičućih napona na 3-D modelu bifurkacije za stacionarno ekspiratorno strujanje

3-D prikaz aksijalne brzine za stacionarno ekspiratorno strujanje u preseku 1

3-D prikaz aksijalne brzine za stacionarno ekspiratorno strujanje u preseku 5

Numerički i eksperimentalni rezultati za aksijalnu brzinu u bifurkacionoj ravni u preseku 5, za stacionarno ekspiratorno strujanje

Numerički i eksperimentalni rezultati za radijalnu brzinu u bifurkacionoj ravni u preseku 5, za stacionarno ekspiratorno strujanje

