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10.1 INTRODUCTION

Collected data constitute a basic source of information. They form a window that we
use to look at our environment (Singh et al., 2003). Data are used for a large number
of activities (see Chapters 1 and 3), such as for assessment of a system’s performance,
calibration and verification of Integrated Urban Water Management (IUWM) models,
real-time control of IUWM systems. The portability, presence of metadata, and their
reliability are critical to the process of data translation into required knowledge. The steps
and procedures used for turning data into information, and then finally into knowledge
are explained in this chapter.

10.2 DEFINITION OF TERMS

Data are classically defined as the basic building blocks of human knowledge and consist
of separate, uncorrelated raw facts (IBM DB2, 2003). Information is data endowed
with relevance and purpose. Using relationships among the original facts (raw data) a
meaningful context is given to data. Knowledge is a step further from information.
Knowledge is created only when human minds incorporate (accept) and act on infor-
mation through decisions. Information can be created from the data using different,
mostly computerized techniques. In the process of knowledge creation, however, tech-
nology can only help humans to select appropriate information, but human beings must
convert the information into knowledge.

The classic definition of data implies that the raw datum by itself delivers no benefits
to the final user. Knowledge is needed to decide on certain action (Figure 10.1). A massive
dataset may even be a distraction if not processed into information. Also, information
does not lead to the decision-making process until people learn it and accept it.
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Figure 10.1 Data must be converted into knowledge in order to be useful
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According to some authors (Santos and Rodrigues, 2003; Thearling, 2007 ) the knowl-
edge discovery process presented in Figure 10.1 consists of a seven-step sequence (Han
and Kamber, 2001; Babovic et al., 2002):

(1) Data cleaning (as explained in Chapter 8), to remove noise from data and inconsis-
tent data sets;

(2) Data integration, to combine different sources of data;
(3) Data selection, to retrieve relevant data for analysis: an appropriate data sampling

strategy has to be defined;
(4) Data transformation, to process data into a form suitable for data mining, through

dimensional reduction using aggregation operations;
(5) Data mining, to identify patterns (relationships, events or trends, which may reveal

both regularities and exceptions among data) and enable model selection;
(6) Pattern evaluation and interpretation, to identify interesting patterns representing

the knowledge;
(7) Knowledge representation and usage, to represent the gathered knowledge to the

user and its use in decision making.

All these steps assume that the data about the real world are already acquired and
stored within available databases, actually the most costly and technically complex task
as it involves conversion of data from our ‘analogue’ world into a digital representation.
Some authors call those preparatory steps ‘data consolidation’ (Thearling, 2007).

Figure 10.2 extends the process of data transformation into usable knowledge
given in Figure 10.1. It shows the feedback process used to improve the overall system

140 Data requirements for integrated urban water management

Figure 10.2 Conversion of collected data to knowledge as an interative process
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Use of data to create information and knowledge 141

performance at each step. Two important considerations are underlined on the upper
left part of Figure 10.2:

● Data screening: How can we know what data are available and where they are? In
complex systems, like urban water, a number of organizations are in the business
of data collection. Existence, accessibility and availability of such data become an
important ‘source of information’ in itself and are key components of making and
keeping those data useful.

● Searching for the right data: How can we know that the right data were collected
and stored from the right place and at the right point in time? For knowledge cre-
ation, no information is much better than bad information. The single most elusive
problem associated with transformation of data to knowledge is identifying errors
while gathering accurate information. That is why data validation (Chapter 8) is so
important and why metadata associated with accuracy assessment must be stored
together with raw data.

The steps from data capture and data cleaning through pattern evaluation are nowa-
days carried out using computers. Large quantities of data can be easily processed and
vast amounts of information created. However, the path from information to knowledge
still has one important ‘bottleneck’, human beings. Humans have to be able to accept
all those patterns and information in order to compile it into knowledge. This bottleneck
we must be aware of when using automatic filtering of irrelevant patterns and identi-
fication of interesting information. Often the capacity of computers to produce patterns
and information exceeds the capacity of human beings to interpret them.

The conversion of data to knowledge, as presented in Figure 10.2, implies that the users
of data are managers and politicians that will use expertise of scientists in knowledge
creation, to inform business and political decisions. But in many water-related organ-
izations, most data are still measured in order to control and manage the system in real
time. Real-time controller (RTC) devices designed to act upon a certain state of input
parameters and measured data. In this way, RTC systems can be seen as ‘data to knowl-
edge converters’, with more or less artificial intelligence (Figure 10.2), however, RTC
systems are still controlled and programmed by humans.

10.3 FROM DATA TO INFORMATION

While data is simply the product simply of collection, information is defined by the
content of the data, which is meaningful to the user and relevant to the question of
problem being addressed. Data exist from the moment it is captured and stored, while
information exists only if it is useful to some audience or decision makers in the most
general and inclusive sense.

The database management system therefore has to be designed to support informa-
tion retrieval. Portability of stored data and the presence of metadata are prerequisite,
as described in Chapter 9. As different urban water systems are integrated, portability
of the data becomes the biggest challenge, since different data users with different
needs will have an access to local databases.

A scheme for information retrieval in an integrated environment is presented in
Figure 10.3. The data user (presented as ‘Workstation’) will ask the ‘common data
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142 Data requirements for integrated urban water management

repository’ (the database with metadata about the raw data and storage locations) what
data are available and where they are. Automated searching and sorting tools have been
developed to keep track of where data are stored (e.g. SDSC, 2004). While searching for
data to be analysed, care should be taken on systems with data-rich information-poor
syndrome (DRIPS) (Maksimović, 1999).

An authorized user will extract data and then perform different techniques to develop
information from this data. This may include running simulation models and performing
calibration of them, as well as, say, simply visualizing the data. Any derived datasets
should be accompanied by metadata that describes exactly how it was derived.

Any information extracted from the data should have the following properties
(Fedra, 2003; Harmancioglu, 2003):

● It should be timely in relation to the dynamics of the problem to be addressed. For
example, when a pipe bursts, information on what valves to close in order to cut-off
the flow is needed urgently. On the other hand, information on population growth,
useful to predict future water needs is required over longer time frames.

● It should be available when it is needed. For example, predictions need to be made
in time to react to an event.

● It should maintain the accuracy of the data used to create it. Proper creation and
maintenance of metadata is necessary to ensure that only accurate data are used.

● It should be accurate and precise in the frame of the information requirement. For
water supply, for example, certain precision will typically be a legal requirement,
if it to be used for billing. On the other hand, excess precision will unnecessarily
consume storage.

● It should be easy to understand. The information is just a step toward its acceptance
by humans and subsequent conversion into knowledge. Understanding is prereq-
uisite to this process.

● It should have a format expected by and adequate for the audience and users.
● Its context should allow and facilitate interpretation. Information should not be

ambiguous; it must have a unique meaning.

Figure 10.3 Schematic of an integrated database and data-processing system
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● It should be easily accessible (free or not), that is, expensive in relation to the implied
costs of the analysed problem. For example, if a water utility manager needs data
on total consumed electrical energy in the previous year for rough assessment of
power needed for the current year, two sources of data could be used: the first one,
much faster and cheaper, will be by summing all consumers’ electricity bills. The
second one could be by taking readings from all supervision, control, data acqui-
sition and data analysis (SCADA) systems, sorting the consumption according to
different types of electrical devices and types of consumers, checking of electrical
tariffs. The second approach is much more elaborate, will give better insight, but is
also much more time cleaning and more expensive.

The user has a number of information technologies available to process data
(Shaimardanov et al., 2003). These technologies, none mutually exclusive and often
combined, include:

● GIS, a set of tools for data retrieval, selection, manipulation and preview;
● statistical analysis for re-processing of data, data aggregation and subsampling;
● data mining for the automated search for certain patterns within data or for certain

theoretical relations;
● simulation models used alone or within data mining;
● the internet for data acquisition, searching for data and knowledge, the dissemina-

tion of obtained information, and the distribution of the data mining work load to
grid computers, and

● Object orientation as an encapsulation of the above methods.

10.3.1 Geographic Information Systems

Geographic Information Systems (GIS) facilitate the capture, storage, retrieval, analy-
sis and display of geographic and spatial data (Burrough, 1993). The basic working
forms are maps, that is, all data within GIS are spatially (geo-) referenced. GIS works
generally with very large volumes of data and uses complex concepts that describe
geometry of objects and relationships between them. The spatial objects have attributes
or properties that could be a function of time but are independent from the location in
space. The space in GIS is defined through layers and the relation between objects, so user
can easily locate them. A GIS has two major roles: one is data capture and storage (see
Chapter 9), and the other is data integration, analysis, integration with external models,
as well as presentation and dissemination.

The GIS handles inquiries from various groups of users with different views of the
same spatial data and with different processing needs (Prodanović, 1997). The key dif-
ference between GIS and other automatic cartography systems (AM/FM systems) or
CAD programmes is their ability to integrate geo-referenced data from a number of
layers (and different sources) and to create new information out of existing data.
Successful GIS usage depends on:

● data availability (at the appropriate scale for the problem);
● adequate concept of internal data organization;
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144 Data requirements for integrated urban water management

● existence of metadata to allow integration of the available data;
● a decision model for users that will integrate the gathered data, subsample them

according to some criteria, transform them using the selected model, and create
new information or patterns,

● criteria for model evaluation, where the GIS visualization functions will help in
presentation of model outputs (in time and in space), thus increasing the speed of
information to knowledge transfer.

According to some authors, GISs were originally developed as an operational tool: to
manage vast amounts of spatial data. Now GISs are shifting from being simple opera-
tional tools to being strategic decision support systems, incorporating more powerful ana-
lytical techniques (Sholten and LoCascio, 1997) as a result of a number of developments:

● visualization that has evolved considerably: three-dimensional virtual reality func-
tions and multimedia offering greatly improved information evaluation by users;

● communication possibilities that allow easy sharing of data with closed propri-
etary systems now transformed into widely accepted open GIS (Raper, 1997);

● advanced spatial data analysis methods based on neural networks, genetic algo-
rithms, fuzzy data concepts, interpolation and extrapolation of data;

● hardware progress relative to price, particularly for GPS.

10.3.2 Statistical analysis

The extraction of statistical information is probably the very first thing each data user
will do when faced with a new dataset. For example, when concentration of dissolved
oxygen (DO) is monitored in a small creek, the user may calculate statistics such as the
mean, median, minimum and maximum. Depending on the main database design
(Chapter 9), some primary statistical values could even be stored as metadata in the
(pre-) processing stage, thus speeding up the possible search by remote users for
relevant raw data (e.g. search for records where the mean DO concentration is less
than 5 mg/L).

In general, there are three statistical concepts that are used in data analysis (Singh et al.,
2003) regardless of the dimensionality of data:

(l) extraction of aggregate characteristics, that is, calculation of mean values, along
time or space, specifically the arithmetic mean, median, mode, harmonic mean
and geometric mean (with the calculation of mean values reducing dimensionality
of the data by one degree);

(2) extraction of variations of individual values from aggregate properties, including
the calculation of deviation (mean and standard), variance, coefficient of varia-
tion, skewness; and

(3) change of the time/space domain into a frequency/time or wavelet domain.
Standard methods of time series analysis include the analysis of frequency distri-
bution of individual values (empirical or theoretical), usage of ‘Fourier transform’
to extract the dominant frequency components using periodic sine and cosine
functions, or the wavelet transform with optimized mother functions.
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All three concepts could be used either as data transformation tools to process the
data into new information, or as pre-processing tools to reduce dimensionality of the
problem.

Based upon the extracted statistical data, it is important to maintain an active feed-
back with the main database from which the raw data were extracted, as previously
discussed. The feedback should provide information to the main database on:

● monitoring equipment, with respect to selected time and spatial resolution (for
example, the sampling rate is too slow for the monitored variable, or the sensor range
used is too wide), assessed accuracy (more accurate measurements are needed) and
availability of metadata from monitoring equipment (requests for more specific
metadata);

● new requests for (pre-) processing of the raw data and general work with the meta-
data; and

● sampling criteria used to extract the data from the main database and to create the
remote database accessible by users.

10.3.3 Simulation models

Simulation models are the representation of physical laws or processes expressed in
terms of mathematical symbols and expressions (i.e. equations). Such models are used
as a basis for computer programmes where the effect of changing certain variables on
the output result can be examined, for example, the analysis of the effect of daily vari-
ation in water consumption on water delivery system.

As the raw data are a representation of the physical world’s current state through
sampled fragments, the simulation model is used to represent the continuous complex
interactions between different variables and processes. The simulation model should
respond to inputs as it would in the real world, allowing the user to interpolate the
fragments of measured data into a continuous series. Such models can also be used for
past and future prediction (assuming constancy), and thus become very useful for
making decisions about possible management actions.

Simulations models are a powerful and commonly accepted technique for extracting
information from available data. The data are used during several stages, including:

● Model creation: The concept of the real world simulation is heavily driven by data
availability. The old concepts of well-established models are now changing
(Maksimović, 1999) towards data-driven physically based models (Drécourt and
Madsen, 2001; Katopodes, 2003). With the integration of the data related to all
aspects of urban water cycle, it is possible to develop a complex integrated model
that will allow full interaction of several systems. A good example is presented
within the UNESCO IHP VI Project 3.5.3 ‘Urban Groundwater Interactions’ where
three urban water components are linked: water supply, sewer system (channels and
trunks), and underground water.

● Model calibration: Sufficient amounts of measured user-selected data are needed
to calibrate the model. The calibration phase of the simulation model can, in some
instances, result in changes in already accepted model concepts.
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● Model verification: The data used in verification is different from data used during
the calibration phase. Model verification can be also done continuously using newly
measured data, so changes in the real world that are not implied by the model can be
discovered. Through the model verification, a measure of model uncertainty can
be established. There are two types of uncertainties that should be addressed (see
Chapter 6), specifically, first, how accurately is the true world represented and what
are the limits of model? What are the errors that the model will produce using
accurate input data, within specified model limits (i.e. when used for interpolations)
and outside the limits (if used for extrapolations)? The answers to these questions are
directly related to the model concept (whether it is a physical model, conceptual
model, simple parametric model, etc.) and data sets used for model calibration.
Secondly, the propagation of data uncertainty through the model and interaction
with the model’s own uncertainty (see Figure 10.4) should be addressed.

● Model usage: Once the model is calibrated, the user can ‘play’ with it, trying different
scenarios to learn what might be the response in the real world. An important part
of each simulation model is the presentation of the results, converting the information
into usable knowledge.

The interactive use of models provides a ‘feedback loop’, helping to improve under-
standing of the system. In turn, the user with this new knowledge may determine to
collect better data to further improve the model.

Simulation models can also be integrated into bigger, more complex models of the
urban water system. An example of several simulation models integrated into the larger
conceptualization of the water utility system is presented in Figure 10.5. The demand
forecast model, for example, will take samples of data from the Customer Information
System (CIS), locations from the GIS, current flow and reservoir levels measurements
from the SCADA, and meteorological data from external system. The demand forecast
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Figure 10.4 Extrapolation of water consumption using a simulation model with a specified level of
uncertainty
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model is linked with a hydraulic model of water transport through the network, which
will use also GIS data and data from the Leakage Control System (LCS). The hydraulic
model is closely coupled with the water quality model and calibrated using the results
of the Laboratory Information Management System (LIMS). The final goal of all these
integrated models is to predict the quality parameters at the customer’s connection and to
suggest the appropriate actions to maintain those parameters within allowable limits.

A well-established and calibrated model can be used to extract reliable information
even from incomplete data sets. If the pressure sensor in SCADA is out of order and its
signal is missing, the simulation model can be used to compute a dummy number to
fill in the gap within the database, as shown in Figure 9.1. Of course, this entry has to
be marked within the metadata as ‘simulated’.

Sometimes, the simulation model can be used to reduce the cost of equipment by
monitoring a variable indirectly using some other easily measured quantity. For exam-
ple, turbidity is often used to monitor total suspended solids (TSS) using simple corre-
lation models (Fletcher and Deletić, 2007). If this is the case, it has to be recorded
within metadata, since it affects knowledge derived from the TSS readings.

10.3.4 Data mining

The main drawback of using a simulation model for information extraction is that the
user must have a good previous knowledge to prepare the model and to prepare the
input data for calibration and model usage. When faced with a number of available
data series within an integrated urban water database environment, analytical tools
need to include intelligent reasoning in computerized data analysis. The general name
for all such tools is ‘data mining’, the automated analysis of large or complex data sets
in order to discover significant patterns or trends that would otherwise go unrecognized
(Savic et al., 1999), or, according to Kurt Thearling, the extraction of hidden predic-
tive information from databases (Thearling, 2007).

Water ut ility system
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Figure 10.5 Example of applications of an integrated use of simulation models as part of an Integrated
Urban Water Management system (LIMS � Laboratory Information Management System,
CIS � Customer Information System, GIS � Geographic Information System, MMS � Maintenance
Management System, LCS � Leakage Control System and SCADA � Supervision, Control, data
Acquisition and Data Analysis).
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The term ‘data mining’ appears in the literature under a multitude of names, which
includes knowledge discovery in databases, data or information harvesting, data
archaeology, functional dependency analysis, knowledge extraction, and data pattern
analysis (Savic et al., 1999). Recent improvements have seen advances in the use of
data mining for environmental numerical and non-numerical data, including pattern
recognition in spatial data (Wachowicz, 2000).

Data mining can be conducted as:

● Unsupervized learning (Roiger and Geatz, 2002) or unidirected or pure data min-
ing (Savic et al., 1999) or data-driven mining (Babovic et al., 2002): A data min-
ing method that is left relatively unconstrained to build models and discover
patterns in the data, free of prejudices (hypotheses) from the user. It is thus a true
discovery process and is used usually for classification and clustering.

● Supervised learning or directed data mining or theory-driven mining: The user
builds a ‘learner model’ or concept definition based on existing knowledge and
understanding of physical processes. Data mining is used to train the model by
comparing the known input/output relations. The model is then used to determine
the outcome for new input instances.

● Detection of anomalous data and patterns: The user applies previous data mining
results to analyse anomalous patterns and unusual data elements, that is, those that
do not conform to the general patterns found.

● Hypothesis testing and refinement: The user presents a hypothesis to the system
for evaluation and, if the evidence for it is not strong, seeks to refine it.

Within all the above learning categories, two main data-mining tasks can be identi-
fied (Santos and Rodrigues, 2003; Savic et al., 1999), namely,

● prediction, a task of deduction using the data to make prediction, incorporating
classification, regression and time series analysis; and

● discovery or description, task of general data characterization, which may include
deviation detection, database segmentation, clustering, associations, rules, summa-
rization, visualization and text mining.

The process of data mining starts with data screening, cleaning and integration from
different sources. Particularly in large, integrated databases where the data come from
many different sources, there will likely be errors. With the assistance provided by meta-
data, screening systems will identify anomalous data. In most cases some data trans-
formation will be used to prepare datasets before model running. Care should be taken
during data transformation not to mask the features that carry the most important
information.

Selection of training and validation datasets using appropriate sampling strategies is
the next step. In order to achieve robustness and generalization, data mining is commonly
done on a split dataset. The training set is used to develop the model and to evaluate
fitness of the learned model, while the validation dataset is used to calculate the over-
all error between the modelled and target output. It is important to include a sufficient
number of parameters (data fields) that may have some relevance to the problem being
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studied. The data mining system will then discover which ones are the most useful and
what is the relationship among the parameters. Omitting a highly relevant parameter
from analysis will cause deterioration in prediction performance of the system.

The final phase, knowledge discovery and encoding, involves running the system,
validating the patterns discovered and finally encoding the results of data mining in
software that can be used for prediction or classification purposes in future.

Data mining technologies can be classified into two major groups: equation based and
logic based. The difference between these two approaches can be seen in Figure 10.6.
The equation approach is carried out mostly on numerical data, using statistics and
artificial neural networks. Typical of the statistical approaches is regression analysis
(Figure 10.6). It works well for less complex sets of data, such as straight line or simple
nonlinear smooth surfaces. However, transparency of the method (ability of humans
to understand the equation) decreases with the complexity of the equation employed.
On the other hand, the greatest advantage of artificial neural networks over other model-
ling techniques is their capability to model complex, non-linear processes without having
to assume the form of the relationship between input and output variables.

The alternative approach, the logical approach, usually employs the conditional
operators IF/THEN to represent the knowledge. The logical approach (as in Figure 10.6)
is best at dealing with sharp-bounded properties of objects, although some fuzziness can
be added in the condition operators. The logical approach can deal with both numeric
and non-numeric data. Decision trees and rule induction are two of the most used
techniques. Though similar, they differ in the way they discover information and more
importantly in terms of their behaviour regarding new data items. The decision tree will
use the simplest form of IF/THEN statements to represent the information and dis-
cover rules. Rule induction will use conditional relationships or so-called conditional
logic (for example, ‘IF it is raining, THEN it is cloudy’) combined with associations

Statistics

Artificial
Neural

Networks

Decision
Trees

Rules

Equation
basedData
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technologies
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Figure 10.6 Main technologies for data mining 

Source: Savic et al., 1999.
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between data fields or association logic (for example, the observed fact that in 80% of
cases when fault x occurs then fault y is also encountered).

Data mining is still a relatively young discipline with wide and diverse application.
Because of the relative slowness of data mining algorithms, the working sample of the main
database has to be small, well sampled and well-prepared. The user must consider if the
data mining approach is the right one, or if instead a simple data query (using SQL) would
more efficiently solve the problem (Roiger and Geatz, 2002). This depends on the type of
questions user wants to answer, and the type of knowledge he/she wants to discover:

● shallow knowledge, simple summaries (e.g. averages) or aggregates (totals) of an
attribute over a selected set of cases, in which SQL is probably the most appropri-
ate tool;

● multidimensional knowledge, information about the frequent occurrence of values
of different attributes (known as ‘Association Analysis’) or simple associations in
large databases (OLAP on the data cube can do this);

● hidden knowledge, about patterns or relationships that are not obvious, which the
user can’t guess prior to data mining;

● deep knowledge, about underlying patterns and relationships that can only be dis-
covered using prior scientific or meta-knowledge. This is the current research
frontier for data mining.

10.3.5 Self-organizing maps

A self-organizing map (SOM) can be considered as an equation-based data mining
technique, which uses an artificial neural network algorithm in the unsupervised learn-
ing category. SOM is a data visualization technique invented by Kohonen (2001), to
reduce dimensionality of data through use of the self-organizing neural networks. The
need for such a technique is obvious, since humans have limited possibilities in the
visualization of complex, high volume and multi-dimensional data sets. SOMs reduce
dimensionality by producing a map which plots and thus displays the similarities of
the data by grouping similar data items together.

Many fields of science have adopted the SOM as a standard analytical tool: statis-
tics, signal processing, control theory, financial analysis, experimental physics, chem-
istry and medicine. The SOM solves difficult high-dimensional and nonlinear
problems such as feature extraction (WEBSOM, 2005) and classification of images
(PicSOM, 2001), acoustic patterns, adaptive control of robots, demodulation and
error-tolerant transmission of signals in telecommunications. SOM tools are directly
compatible with GIS environment where they can be used either for pure visualization
purposes or together with principal components analysis for spatial identifying rela-
tionships and time series analysis. The SOM will assist integrated urban water man-
agement by making the interpretation of multi-source and multi-domain data easier
for a range of urban water cycle scientists and managers.

10.3.6 Internet and grid systems

Advances in internet infrastructure (e.g. TCP/IP protocol, HTTP communication pro-
tocol used for retrieval of documents written in HTML and XML languages), allow
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the rapid exchange of data and information between users. Expansion of wireless net-
works allows environmental monitoring stations to be simultaneously the WEB server.
The user can access it from the internet and obtain status and current readings online.

Currently, the most challenging issue regarding an integrated water environment
driven by internet proliferation is web-based modelling (Islam and Piasecki, 2004).
This is the new paradigm shift in hydrodynamic modelling as well as in numerical mod-
elling. To access the data and simulation model, the user (client) requires only a net-
work connection, an intelligent browser and installation of required plug-ins, or client
version of proprietary software. From the server side, in addition to the database man-
agement system and a high volume of disk space, a distributed version of the numerical
model is needed, to share the data and tasks with one or more clients at the same time.
Because of the potentially large amount of necessary data transfers between the client and
server, a client-side-request and server-side-simulation approach should be used. Model-
View-Controller (MVC) architecture can be used for this kind of system (Kurniawan,
2002). This separates the simulation model or business logic from the model views or
presentation logics (Islam and Piasecki, 2004).

The key issue in development of such a web-based simulation environment is stan-
dardization. The development of a web markup language specific to the hydrologic
community, such as HYDROML (Piasecki and Bermudez, 2003), should standardize
data description and thus facilitate storage, querying, analysis, retrieval and exchange
among data holding sites and end-users. The markup language differs from simple
metadata. As any language, it is constructed from two components; the first is the set
of grammar rules (syntactic structure) and the second is the dictionary (semantics) to
provide the ‘words’. The latter is derived from the metadata and associate standards,
while the former is provided through the use of the Extensible Markup Language, XML
(W3C-XML, 2002). While quite a number of markup languages are currently being
developed and used in a variety of areas, two stand out as perhaps closest to hydro-
logic sciences, namely, the Geographic Markup Language (GML, 2002) developed
by ISO (norm 19136) with the OpenGIS community and the Earth Science Markup
Language (ESML, 2002) originating from an effort to incorporate data elements from
the earth observation community.

The further extension of web-based simulation leans toward grid systems and grid
computing. A grid system is ‘an ambitious and exciting global effort to develop an envi-
ronment in which individual users can access computers, databases and experimental
facilities simply and transparently, without having to consider where those facilities
are located’ (RealityGrid, 2001; Joseph and Fellenstein, 2004). It offers a model for
solving massive computational problems by employing the unused resources (CPU
cycles and disk storage) of a large numbers of disparate, often desktop, computers
treated as a virtual cluster embedded in a distributed telecommunications infra-
structure. The focus is on the ability to support computation across administrative
domains, which is different from traditional computer clusters or traditional, distrib-
uted computing.

In spite of rapid developments in internet-based applications, there are still a number
of considerations that need to be resolved. Some of the most important are security,
trust and portability.

Security of web-based simulations and grid systems remains an issue that must be bet-
ter addressed by the industry and scientific community. In trusted environments, within
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a department or within an open research community for example, where applications
and data are not in a mission-critical or proprietary state, security is less of an issue.
Beyond those safe harbours, there is a call for strong security measures, and the indus-
try is working to overcome both real and psychological firewalls. Currently, several
working groups within the Global Grid Forum are working on standardization of the
many already existing security solutions.

Another important question is the degree of trust that a user can place in results and
views obtained from a web-based simulation model. What form of accreditation of
data is needed, and how will data uncertainty be communicated to the users? There is
also a question of information availability: how to be sure that today’s accessible pages
and sites with relevant data and literature will be accessible tomorrow? Saving local
files is a solution, but adds to storage requirements and data duplication.

Another consideration concerns portability of data. Now it is common to share data
over the internet between people working on the same project, but questions still remain
about how others can use the data. Data formats and accompanying metadata are tightly
linked with programmes and applications that will use the data. Conversion from one
format to another is sometimes painful (for example, conversion between rainfall-runoff
models, say, from Hydroworks to Mouse or Simpson) or sometimes not possible without
additional work (if concepts of programmes were not the same, such as in the conversion
from a node-oriented model to a link-oriented one).

10.3.7 Object orientation

The Object Oriented (OO) concept is based on a real world concept: the fundamental
construct is the object that combines both data structure and behaviour (Fedra, 2003).
The OO concept was first developed as a database management system, but since then
it has evolved into the mature concept capable of integrating a wide range of informa-
tion technologies. Most programming languages are now object oriented, and GIS also
works well within the object-oriented umbrella. In addition, databases with sharable
resources and integrated metadata are becoming object oriented, and even numerical
simulation models are being developed using object-oriented approaches.

In the OO system, the object is the basic element. Objects of the same structure and
behaviour are grouped within classes. The basic properties of objects are (Prodanović,
1997):

● Abstraction, a mental process that extracts the essential aspects of the object that
distinguishes it from all other kinds of objects for a particular purpose. For example,
the complex real world object is reduced to the rectangular shape named ‘Poly1’
to represent a certain cover type, the percentage of imperviousness, specific waste-
water flow, and so on. There are four basic concepts of abstraction: classification,
generalization, association and aggregation.

● Inheritance, a mechanism permiting the development of new classes by modifying the
existing one. The object ‘Poly1’ will have all characteristics of classes and subclasses
(for example, the ‘Cover’ subclass used to describe the terrain cover) it was derived
from. This is the primary way of minimizing data redundancy and of breaking the
complex, real-world objects into manageable modules.
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● Encapsulation or content hiding, which means that everything within the object is
private to that object. The only way to work with its contents is through the object
interface, the built-in object operators, methods and rules. The area of ‘Poly1’ is stored
within this object. If the ‘Cover’ classes used to derive the ‘Poly1’ have a function that
will report the polygon area, the user can ask the ‘Poly1’ for its area. Otherwise,
access to that information is not possible.

● Polymorphism, meaning that the same object can respond differently, depending
on the type of operation the user asks it to perform, and the current state of the
object. The total area operator in the ‘Cover’ class will look at the ‘Poly1’ object to
check if it is a background type of area or not, so as whether to include the area into
the calculation or not.

● Message passing, meaning that the only way to work with an object is to pass a
message to the object and to wait for the object’s response. If the built-in methods
in the object recognize the received message as a valid operation, they will react;
otherwise they will ignore the message. The message system is very important, and
it is employed for user communication with the objects, as well as internal com-
munication among the objects.

● Persistence, meaning that an object will live as long as the (authorized) user decides
so. Anything that refers to the object will then also delete references to it.

From the given list of an object’s basic properties in OO systems, it can be seen
that OO can be easily applied to distributed databases and the distributed concept
of computing and modelling. A large database that covers all needs of a big water
supply company can be separated into a number of smaller units (see Figure 10.3).
All those units could be spread around the company, sitting on different computers
within appropriate departments and using different operational systems. An intranet
or full internet link can be used to connect the computers and databases. The
object orientation approach is thus very helpful in achieving database integration and
sharing.

There are a number of examples of the OO approach in resolving water resource
management problems. Fedra and Jamieson (1996) have described and used three spa-
tially referenced object types: river basin objects, network objects and scenarios. Those
objects have functions that can obtain or update their current state and report the state
to clients, and a number of classes used to derive the objects. Havnø et al. (2002) gave
an excellent example of OO code architecture development on the Caloosahatchee
Basin in central Florida. Another large project (WaterWare, 2005) came out as a result
of EUREKA EU487. It is an integrated model-based information and decision support
system for water resources management, developed and applied on the River Thames
(England), the Lerma-Chapala Basin (Mexico), the West Bank and Gaza (Palestine),
the Kelantan River (Malaysia) and the Yangtze River (China). Also, applications
around the Mediterranean in the EU sponsored projects SMART and OPTIMA
included river basins in Cyprus, Turkey, Lebanon, Jordan, Palestine, Egypt, Tunisia
and Morocco. The OO approach is widely used also in Cooperative Research Centre
for Catchment Hydrology [http://www.catchment.crc.org.au/ (Accessed 02 July
2007.)] for a development of catchment modelling toolkit [http://www.toolkit.net.au/
(Accessed 02 July 2007.)]. These examples provide useful ‘starting points’ to identify
what may be possible for a specific local application.
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10.4 FROM INFORMATION TO KNOWLEDGE

Using all the described techniques in the previous subsection, the user can generate a
vast amount of information. However, the information will become knowledge only
after the user is able to process and understand it. Knowledge itself, however, is not the
final goal; the ultimate goal is to use that knowledge to make decisions.

10.4.1 Resolving data bottlenecks

Generally, it is the transfer of information into knowledge that provides the bottleneck
in the overall flow from data to knowledge. The ‘transfer rate’ of information into
knowledge is limited, and in fact, the large rate of information production can cause
phenomenon known as ‘information infarct’ due to information overload (Maurer,
2003, 2004).

The problem of a user’s limited capacity in processing acquired information is even
more challenging if this is to be performed in a limited time frame, for instance, in
order to undertake action in the case of emergency or disaster. In order to make signif-
icant progress towards understanding more complex integrated environments and to
undertake the right actions at the right time, it is crucial to improve handling of the
ever-growing amount of information. Some measures that could be considered are
(Maurer, 2003):

● Accelerating information transfer rates.
● Homogenization and standardization of information representation. It is much

easier for the user to work with standardized diagrams and tables, than to have to
re-learn each time table headers and diagram axes.

● Improvement of selection mechanisms for targeted information retrieval to pro-
vide only the required information and thus reduce overload. Technology can help
in selection and ordering of the most relevant information (a good example is the
Google web search engine, which in the most cases will offer the most relevant
information within first 5 to 10 listings).

● Improvement of aggregation schemes to summarize information. The pile of infor-
mation can be reduced if usable aggregate information is presented to the user.
Then, if users want deeper knowledge, they can further interrogate the summa-
rized information.

● Improvement of disaggregating schemes and interface definition to facilitate shar-
ing of the work-load among a number of project participants, thus decreasing the
amount of information required by a single individual. Since more users will be
involved in knowledge creation, the process will be quicker. Also, each user can select
the most appropriate type of information according to need.

These proposed measures call for the organization of better coordinated structures
with a high degree of complexity, both in a technical and an administrative sense.
Examples in the technical domain include libraries, meta-databases, standardization
efforts, generic concepts, expert and decision support systems. Similarly, in the human
domain, this relates to improved coordination of organizations and programmes at the
international, national, regional and local levels. Often developments in the technical
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field trigger change in organizational structures within society. Sharing of the work-
load on a global scale is thus needed to cope with complex tasks that are to be solved.
In the global knowledge society this leads toward establishment of balanced and stan-
dardized education systems throughout the world. Chapter 11 provides some further
discussion of the institutional requirements to support integrated data collection and
use for urban water management.

10.4.2 Knowledge application

The true value of knowledge is only in its use. As shown in Figure 10.2, there are two
main outcomes from knowledge creation: the feedback to various parts of the system
and the action (or the decision not to take action) that is undertaken as a result of this
knowledge.

Feedback towards the start of data-information chain will in general improve the
performance of the whole system. Optimization of monitoring network, sampling site
position, sampling frequency and methods used for data evaluation, based on early
results and previous knowledge, can significantly reduce flow of the data, but improve
its quality. Improvements to models can help to understand existing data.

The feedback will be also applied to autonomous real-time controllers (RTCs),
devices that mimic data to knowledge transformation by taking some actions based on
obtained data. Through the process of learning about the whole system and behaviour
of each RTC, the controlling strategy can be changed and adapted to optimize the sys-
tems performance.

Actions that the user will undertake based on knowledge will be the result of a decision-
making process. Computers aid this process through decision support systems (DSS).
The objective of DSSs for integrated urban water management is to improve planning
and operational decision making processes by providing useful and scientifically
sound information in a dedicated form to the actors involved in these processes,
including public officials, planners and scientists, various interest groups, major water
users and possibly even the general public.

A DSS will support and facilitate the process of assessing the possible consequences
of measures and actions, before making a proper selection from the available alterna-
tives. The ultimate objective is to ensure sufficient and sustainable water resources,
thus contributing to the maximization of some (rather hypothetical) social welfare
function.

Decision making involves a choice between alternatives. The DSS should help the
user to analyse the alternatives and to rank them according to a number of selected cri-
teria by which they can be compared. These criteria are checked against the objectives
and constraints involving possible trade-offs between conflicting objectives. The con-
straints are to be checked also, if no alternative can meet them.

Approaches in DSS span a wide range of conceptual levels, such as (Fedra, 2003):

● information systems, to provide information about the present state of a system
permitting forecasts based on the observed trends;

● scenario analysis, to support the exploration of numerous ‘what if?’ questions;
● comparative evaluation, to assess different scenarios using performance indicators

established (preferably according to some local, national or international standard)
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in at least two scenarios (with graphical display of data allowing easy comparison
in most cases); and

● optimization, to reach a consensus. Since each scenario is described by more than one
performance variable, direct comparison does not necessarily leads to clear rank-
ing. This can be resolved by introduction of a preference structure that defines the
trade-offs between objectives. Numerous optimization techniques are then used,
either directly, or more often with a discrete multicriteria approach, that will seek
an efficient strategy to satisfy all the actors and stakeholders involved in the water
resource and environmental management decision processes.
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