Comparison of short term rainfall forecasts for model based flow prediction in urban drainage systems

Søren Thorndahl1*, Troels Sander Poulsen2, Thomas Bøvith3, Morten Borup4, Malte Ahm5, Jesper Ellerbæk Nielsen6, Morten Grum7, Michael R. Rasmussen8, Raphall Gill9, and Peter Steen Mikkelsen10

1 Aalborg University, Department of Civil Engineering, Denmark, st@civil.aau.dk
2 Krüger, Veolia Water, Denmark, tsp@kruger.dk
3 Danish Meteorological Institute, Denmark, thb@dmi.dk
4 Technical University of Denmark, Department of Environmental Engineering, Denmark, morb@env.dtu.dk
5 Aalborg University, Department of Civil Engineering, Denmark, ma@civil.aau.dk
6 Aalborg University, Department of Civil Engineering, Denmark, jen@civil.aau.dk
7 Krüger, Veolia Water, Denmark, mg@kruger.dk
8 Aalborg University, Department of Civil Engineering, Denmark, mr@civil.aau.dk
9 Danish Meteorological Institute, Denmark, rsg@dmi.dk
10 Technical University of Denmark, Department of Environmental Engineering, Denmark, psmi@env.dtu.dk

ABSTRACT

Forecast based flow prediction in drainage systems can be used to implement real time control of drainage systems. This study compares two different types of rainfall forecasts – a radar rainfall extrapolation based nowcast model and a numerical weather prediction model. The models are applied as input to an urban runoff model predicting the inlet flow to a waste water treatment plant. The modelled flows are auto-calibrated against real time flow observations in order to certify the best possible forecast. Results show that it is possible to forecast flows with a lead time of 24 hours. The best performance of the system is found using the radar nowcast for the short leadtimes and weather model for larger lead times.

KEYWORDS

DMI-HIRLAM, forecast, numerical weather model, radar, runoff model,