

9th International Conference on Urban Drainage Modelling Belgrade 2012

Measurement of discharge by the ultrasonic (transittime) method in "degraded mode" using computational fluid dynamics and data analysis

Matthieu Dufresne^{1,*}, Jean-Bernard Bardiaux¹, José Vazquez¹, Sandra Isel¹, Martin Fischer¹, Aude Napoly²

¹ National School for Water and Environmental Engineering (ENGEES), Fluid and Solid Mechanics Institute (IMFS), address: IMFS, 2 rue Boussingault 67000 Strasbourg, France

² Lyonnaise des Eaux, address: Lyonnaise des eaux, agence Haut-Rhin, 2 rue Turgot 68110 Illzach, France

* Corresponding author: matthieu.dufresne@engees.unistra.fr

ABSTRACT

This study proposes a computational fluid dynamics and data analysis based methodology to determine the discharge using ultrasonic (transit-time) gauging stations in degraded mode (when one or several paths are not working). This methodology is presented through two applications: the gauging stations *Milan* and *Quai Forst* in Mulhouse city, France. A data analysis is carried out to determine the degraded relationships for missing velocities. Results highlight the very practical potential of this approach in real-life conditions. Our message is not to say that some paths are useless; all of them are necessary for an accurate determination of the discharge. But, when some data are missing, instead of losing the whole discharge with a limited additional error.

KEYWORDS

Sewer networks, discharge measurement, transit-time, computational fluid dynamics, data analysis, degraded conditions