ACO

Integrating sustainable drainage systems -Henry Box affordable housing scheme, Witney: Case experience from Oxfordshire UK

Martin Fairley Research Director ACO Technologies plc 5th September 2012 mfairley@aco.co.uk

From standards & guidance to legislation...

Interpretation of forthcoming National Standards

Treatment train SuDS for QUALITY

1. Filter drain

2. Swale

- 3. Trench
- 4. Detention basin
- 5. Wetland
- 6. Retention pond

- 7. Green roof
- 8. Soakaway

- 9. Rainwater harvesting
- 10. Permeable pavement

11. Attenuation systems

- 12. Channels and rills
- 13. Bioretention
- 14. Infiltration trench
- 15. Filter strip
- 16. Rain garden

Water quality benefit

Source: Ciria C687 pp 27-29

Implementing SuDS on commercial developments

Applying lessons learnt from housing

- Role of "on-site conveyance " through linear channel systems
- Integrating SuDS components
- Managing quantity and quality separately

The Henry Box housing scheme, Witney, Oxford UK - 2002

- Land owned by Oxfordshire County Council
- Identified for affordable housing
- 92 houses on 1.1 hectares
- Sovereign Housing Association
- Atkins as consultants
- 2002 completion

Drainage overview – high invert conveyance via Inear combined kerb drainage

Resilient details

 Overland flood flow accommodation in structures

Roof drainage connection to conveyance system

Site design theme – conveyance at high invert

Gradient	Uniform flow		Steady Non-uniform flow	
	Velocity m/s	Capacity I/s	Velocity m/s	Capacity I/s
1/1000	0.491	23.57	1.14	57.4
1/100	1.55	74.53	1.49	71.5

Table 1. Adapted from Naqvi. M. 2003 – Design of Linear Drainage systems

ACO

Measurements

Measurements on 6th April 2004

13.30-14.30 6th April 04

10 years on

Observations on performance

Roof drainage connection to conveyance system – effect on debris build up?

Sediment in channel run?

At drop kerb constraint

At swale treatment stage

At outfall to watercourse

As employed on Henry Box - Witney

- Conveyance at or near surface using linear channel drains
- high invert outlet to subsurface geocellular attenuation
- discharge to swale (treatment)
- discharge to watercourse

Implementing SuDS on commercial developments

On commercial / urban projects

 Conveyance – at or near surface using linear channel drains (high capacity QMax for example)

- high invert outlet to surface vegetated swale (treatment)
- discharge to high invert outlet to subsurface geocellular attenuation
- discharge to watercourse

Thank you for listening

mfairley@aco.co.uk