

Automatic measured data validation applied on hydraulic and water quality parameters in sewer systems

Nemanja Branisavljević¹ Dušan Prodanović¹ Zoran Kapelan²

> ¹University of Belgrade ²University of Exeter

Research challenges

Challenge 1: Large amount of data can not be validated traditionally

Challenge 2:

Data validation procedure have to be capable to use any kind of information available

Challenge 3:

Data validation procedure have to be independent on type or number of relations between data

Measured data values

- Exact value (-----) not available
- u uncertainty
- ε error

Measured data values

- Exact value (-----) not available
- u uncertainty
- ε error

Data validation – detecting errors if they exist

Comparing measured and predicted values

Measured and calculated values are presented with intervals

Enables detection of errors in data – data validation

Comparing measured and predicted values -complex system-

Suggested data validation methodology

sorry for this mess on the screen – will make it more readable...

Suggested data validation methodology

Data prediction -relation errors and uncertainty-

Data prediction -relation errors and uncertainty-

Validation grades -data probability-

Prediction resultsMeasured data

$$p\left(\left[a,b\right] | \left[a_1,b_1\right]\right) = \frac{p\left(\left[a,b\right] \cap \left[a_1,b_1\right]\right)}{p\left(\left[a_1,b_1\right]\right)}$$

$$p(x_{i} | x_{i}^{M_{j}}, X_{x_{i}}^{M_{j}}) = p([a, b] | [a_{1}, b_{1}]) = \begin{cases} 1 - \frac{\max(0, a - a_{1}) + \max(0, b_{1} - b)}{(b_{1} - a_{1})}, a_{1} \le b \\ b_{1} \ge a \\ 0 \end{cases}$$

$$\max\left(p\left(x_{i} \mid x_{i}^{M_{j}}, X_{x_{i}}^{M_{j}}\right)\right) = \max\left(P\left([a, b] \mid [a_{1}, b_{1}]\right)\right) = \frac{b - a}{b_{1} - a_{1}}$$

Validation grades -weighted average of data probabilities-

Prediction results

Measured data

Validation grades -likelihood of calculated values-

Weights- likelihood of predicted value

$$w_{i}^{M_{R_{j},x_{i}}} = p\left(x_{i}^{M_{R_{j},x_{i}}} \mid X_{x_{i}}^{M_{R_{j},x_{i}}}\right)$$

Maximization of a sum of likelihoods - EM algorithm

$$J = \max \sum_{i} \sum_{j} p\left(x_i^{M_{R_j, x_i}} \mid X_{x_i}^{M_{R_j, x_i}}\right)$$

E step:
$$p\left(x_{i}^{M_{R_{j},x_{i}}} \mid X_{x_{i}}^{M_{R_{j},x_{i}}}\right) = \sum_{X_{x_{i}}^{M_{R_{j},x_{i}}}} \left(\frac{\partial M_{R_{j},x_{i}}\left(X_{x_{i}}^{M_{R_{j},x_{i}}},\theta\right)}{\partial X_{x_{i}}^{M_{R_{j},x_{i}}}}\right)^{-1} P_{x_{i}}$$

M step:

$$P_{x_i} = \sum_{j} p\left(x_i \mid x_i^{M_{R_j, x_i}}, X_{x_i}^{M_{R_j, x_i}}\right) \times \frac{p\left(x_i^{M_{R_j, x_i}} \mid X_{x_i}^{M_{R_j, x_i}}\right)}{\sum_{j} p\left(x_i^{M_{R_j, x_i}} \mid X_{x_i}^{M_{R_j, x_i}}\right)}$$

Validation grades -grades-

1. Not normalized

$$x_i^{grade} = \sum_j w_i^{M_{R_j, x_i}} \times p\left(x_i \mid x_i^{M_{R, x_i}}, X_{x_i}^{M_{R, x_i}}\right) \quad (between \ 0 \ and \ a < 1)$$

2. Normalized

$$x_{i}^{grade} = p_{x_{i}}^{norm} = \left(\sum_{x_{i}} w_{i}^{M_{j}} \frac{p\left(x_{i} \mid x_{i}^{M_{R_{j},x_{i}}}, X_{x_{i}}^{M_{R_{j},x_{i}}}\right)}{\max\left(p\left(x_{i} \mid x_{i}^{M_{R_{j},x_{i}}}, X_{x_{i}}^{M_{R_{j},x_{i}}}\right)\right)} \right)$$

(between 0 and 1)

Evaluating validation systems

$$p = \frac{N_{registered}}{N_{anomalies} + N_{missed} + N_{registered nonanomalies}}$$

Comparing to Kappa index of coincidence:
Higher penalty to missed anomalies, and
Lower penalty to correct values interpreted as anomalies

Case study

Measurements of hydraulic and water quality parameters in Belgrade sewer CSO

Measurements in Belgrade sewer CSO

Measured variables: Velocity (V), water depth (h), electro-conductivity(EC)

Relations between measured variables

	V	h	EC	V^{t-1}	h^{t-1}	EC^{t-1}
R_1	$V^t = f_{V^t}^{R_1}\left(h^t\right)$	$h^t = f_{h^t}^{R_1} \left(V^t \right)$		$V^{t-1} = f_{V^{t-1}}^{R_1} \left(h^{t-1} \right)$	$h^{t-1} = f_{h^{t-1}}^{R_1} \left(V^{t-1} \right)$	
R ₂		$h^t = f_{h^t}^{R_2} \left(E C^t \right)$	$EC^{t} = f_{EC^{t}}^{R_{2}}\left(h^{t}\right)$		$h^{t-1} = f_{h^{t-1}}^{R_2} \left(EC^{t-1} \right)$	$EC^{t-1} = f_{EC^{t-1}}^{R_2} \left(h^{t-1} \right)$
<i>R</i> ₃	$V^t = f_{V^t}^{R_3} \left(E C^t \right)$		$EC^{t} = f_{EC^{t}}^{R_{3}}\left(V^{t}\right)$	$V^{t-1} = f_{V^{t-1}}^{R_3} \left(EC^{t-1} \right)$		$EC^{t-1} = f_{EC^{t-1}}^{R_3} \left(V^{t-1} \right)$
R ₄	$V^t = f_{V^t}^{R_4} \left(V^{t-1} \right)$			$V^{t-1} = f_{V^{t-1}}^{R_4} \left(V \right)$		
R_5		$h^{t} = f_{h^{t}}^{R_{5}}\left(h^{t-1}\right)$			$h^{t-1} = f_{h^{t-1}}^{R_5}(h)$	
R ₆			$EC^{t} = f_{EC^{t}}^{R_{6}} \left(EC^{t-1} \right)$			$EC^{t-1} = f_{EC^{t-1}}^{R_6} \left(EC \right)$

R₁ – Chezy-Manning equation

 R_2 , R_3 – Water quality model of EC reduction

R₄, **R**₅, **R**₆ – AR(1) models

Chezy-Manning equation

 $M_{R_1,V}: V(h) = [3.8, 1.9] \times R([239, 291], h)^{\frac{2}{3}}$

AR(1) models

$$x^t = ax^{t-1} + b$$

Results

-Validation grades-

Results -comparison with manual data validation-

Threshold value= 0.99

(No anomalies)	(No detected)	(No missed)	(No false)	p
244	219	25	73	0.64

Nine validation methods

Conclusions

- New theoretical framework for data validation
- No restrictions about number and type of additional information that may be used in the validation process
- No restrictions of type and number of relations that may be used
- The validation system may be evaluated and improved by improving the relations between the data values

Automatic measured data validation applied on hydraulic and water quality parameters in sewer systems

Nemanja Branisavljević¹ Dušan Prodanović¹ Zoran Kapelan²

> ¹University of Belgrade ²University of Exeter