HINI HOC COOL HI

Vaction publique et des rapports sociaux

Urban water quality modelling: quantifying the fecal coliform load in the Beauport River

 $= \ln (0) \neq \ln$

Amélie Thériault¹, Dr. Sophie Duchesne²

¹ Institut national de la recherche scientifique, Canada, amelie.theriault@ete.inrs.ca
² Institut national de la recherche scientifique, Canada, sophie.duchesne@ete.inrs.ca

September 6th 2012 9th UDM Conference

Centre - Eau Terre Environnement

Water quality in Quebec Canada

Quebec city's Beauport Bay

Photo: LeSoleil

Case Study – Beauport River

Collaboration with Quebec City

- Engineering Services
- Public Works
- Environmental Services

Objectives

 Identify sources of fecal coliform in the Beauport River
Look for relationship between potential explanatory variables

3) Quantify fecal coliform load from different sources

Plan

- 1. Presentation of Beauport River watershed
- 2. Available data
 - Potential explanatory variables
- 3. Modelling
 - Hydrologic/hydraulic
 - Quality
- 4. Results
 - Potential explanatory variables
 - Estimation of fecal coliform load

1. Beauport River watershed – Drainage systems

2. Available data - Microbiological quality

Data

- May to August
- 2008 to 2011
- 148 daily data

2. Available data – Potential explanatory variables

Rainfall

Combined sewer overflow - SOMAE

- − U057 \rightarrow h_c = 1.4 mm
- U051 \rightarrow h_c = 4.4 mm

Year	Rainfall (mm) May to August	Number of rainfall events May to August	Numbe caused l May te	r of CSOs by rainfall o August
		> 5 mm	U051	U057
2008	560.0	31	25	55
2009	507.8	26	34	41
2010	243.2	16	13	30
2011	627.4	25	15	50

3. Modelling

Stormwater management model – SWMM

• Parameters of the hydrologic/hydraulic model

Physical characteristic	Separate	Combined	Unit
	model	model	
Total area	25.5	3.2	km²
Number of subcatchments	914	157	-
Average area of subcatchments	31,000	73,000	m²
Average slope of subcatchments	2.00	1.67	%
Average imperviousness	31	76	%
Beauport River's length	21.4	N/A	km

• Quality model : Event mean concentration - EMC

$$FC = EMC \times Q \times T$$
 $FC = Fecal coliform load, [M]$ $Q = Flow rate, [L^3]/[T]$ $EMC = Event mean concentration, [M]/[L^3]$ $T = Time of runoff, [T]$

4. Results and Discussion

Relationship between FC concentration and rainfall

• Inlfuence of rainfall up to 1 day after

Rainfall	Geometric : CFU/1	^[2] ANOVA	
day	Rainfall threshold		p-value
	< 5 mm	\geq 5 mm	
Day ₀	502	1030	< 0.001
Day _{- 1}	493	1061	< 0.05
Day ₋₂	432	771	> 0.05

11

4. Results and Discussion

Relationship between FC concentration and CSOs

• Number of CSO the same day

4. Results and Discussion

Estimation of FC loads by simulation

Combined dranaige system

FC load per season (CFU)

Drainage system	Minimum (2010)	Maximum (2011)
Separate (25.5 km ²)	6.0 x10 ¹³	1.6x10 ¹⁴
Combined (3.2 km ²)	5.1 x 10 ¹⁵	2.3 x 10 ¹⁶

Conclusion

Summary

- Influence of FC in Beauport River
 - Rainfall
 - CSO
- Simulations
 - CSO > Stormwater
 - EMC method

And now...

- Construction of retention basins are currently taking place
- New Stormwater management guide
 - Fist 25 mm must be treated
 - Peak flow must be the same before and after the project.
- Validate the positive impact of these measure

Thank you – Questions?

References

- Hubert, W.C. and R.E. Dickinson (1988). *Stormwater Management Model, SWMM Version 4 User's Manual*, US-EPA, Athens, GA.
- Schroeder, K., et al, (2011). Evaluation of effectiveness of combined sewer overflow control measures by operational data, Water Science and Technology, 63(2), 325–330.
- NSQD (2004). Findings from the National Stormwater Quality Database, Research Progress Report. Prepared by the Center for Watershed Protection, Ellicott City, MD.
- Shaver, E., R. Horner, J. Skupien, C. May and G. Ridley (2007). *Fundamental of Urban Runoff Management Technical and Institutional Issues*. North American Lake Management Society and US-EPA, Madison, WI.

HINERS Université d'avant-garde

Vaction publique et des rapports sociaux

16

3. Modelling

SWMM – Quality modelling – EMC

 $FC = EMC \times Q \times T$

FC = Load, [M]

EMC = Event mean concentration, [M]/[L³]

 $Q = Flow rate, [L^3]/[T]$

T = Time of runoff, [T]

Concentration [M]/[L³]

Sources	EMC	
	CFU/100 ml	
Stormwater - Land use		
Residential	7,750	
Commercial	4,500	
Industrial	2,500	
Open	3,100	
Agriculture	10,000	
CSO	106	

