

UNIVERSITY OF CAMBRIDGE

Towards an Integrated Modelling Framework for Sustainable Urban Development

S. Ward*, R. Farmani*, S. Atkinson*, **D. Butler*,** T. Hargreaves**, V. Cheng**, S. Denman** & M. Echenique** *University of Exeter, UK **University of Cambridge, UK

UDM, 06-09-12, Belgrade, Serbia

Outline

- Aim & objectives
- Overall methodology
- Modelling framework
- Water optioneering model
- Preliminary findings local, regional
- Conclusions

Aim

ReVISIONS: Regional Visions of Integrated Sustainable Infrastructure Optimised for Neighbourhoods

To support the **planning** of regional infrastructure for **transport, water, waste, and energy** in a more coordinated and integrated way to maximise economic competitiveness, reduce environmental and resource impacts, and enhance the quality of life in urban areas.

Objectives

- to develop a holistic and practical integrated framework for the **analysis and assessment of the sustainability** of regional spatial development.
- to devise and test alternative regional spatial strategies integrated across infrastructure sectors and spatial scales to investigate to what extent infrastructure selection, investment, regulation, and pricing can help to achieve more sustainable ways of living.
- to explore the inter-relationships between infrastructure policies and measures at the regional and local scales and explore the tensions and interactions that exist across these scales, and between sectors.

Methodology & Scenarios

Regional Visions of Integrated Sustainable Infrastructure Optimised for Neighbourhood

Modelling Framework

Scaling Methodology: Generic 'Tiles'

Generic Tiles: Example Dataset

Tile S4: Semi-detached

Gross Density (dph)	41.7	
Net Density (dph)	60.0	
Floor area (m ²)	85	
Building height (m)	6 (2 storeys)	
Land Use (%)	Domestic building	20.04
	Domestic garden	49.68
	Greenspace	0
	Road and path	30.28
	Other land	0
Domestic energy demand	Space heating	8780
(kWh/year/dwelling)	Water heating	1846
	Cooking – gas	627
	Cooling – electricity	385
	Electrical appliances	2036
	Lighting	506
	Total	14180

Tiles and dwelling density

Water Technology Optioneering Methodology

Suitability assumptions:

- % of roof available as catchment
- % of ground for runoff attenuation
- % of land/building area required to accommodate technology
- Water quality needed for end-use

Data-based assumptions:

- Average PCC per water company area (Ofwat June Return data)
- Micro-component/alternative water system demand profiles (Market Transformation Project data)
- Roof-runoff calculations/runoff coefficients/tank sizing (BS 8515: 2009)
- Rainfall (Met Office data)
- System costs, energy requirements, carbon emissions (Centre for Water Systems (UEXE), Green Roof Centre (Sheffield), HR Wallingford, UKWIR & WERF and Environment Agency research data)

An example tile-area-build-technology assessment grid (only for retrofitting rainwater harvesting)

Build Type	Ward Area		Tile Type																		
	Туре	D1	D2	D3	D4	S1	S2	S3	S4	T1	Т2	Т3	T4	F1	F2	F3	F4	F5	C1	C2	C3
	Central	0	0	0	0	0	0	0	0	0	0	1	1	0	0	1	1	1	1	1	1
ofit	Urban	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1
Retro	Suburban	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0
	Rural	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0

			Area type										
-		Central	Urban	Suburban	Rural								
	New Build	GWR (I), RWH (C), GR, PermPave, Swale	GWR (I), RWH (I/C), GR, PermPave, Swale	GWR (I/C), RWH (I), RWH (C), GR, Pond, PermPave, Swale	All								
	Retrofit	GWR (I), GR, PermPave, Swale	GWR (I), GR, PermPave, Swale	GWR (I), RWH (I), GR, Pond, PermPave, Swale	All except RWH (C) and GWR (C)								

Water Technology Optioneering Model

	A	В			IVI	N N	0	P	U U	к	5	1		
1						Standard RWH Technology								
2		Gene	eral Ward Ini	formation	Water sav	ing from RWH	RWH	l Costs	RWH	CO2	RWH Costs	RWH CO2		
3	Ward	WRZ	Total Dwell	Total Pop	HH (m3/day)	Comm (m3/day)	HH Cost (£)	Com Cost (£)	HH CO2	Com CO2	HH Cost (£)	HH CO2		
4	Essex & Su	ffolk '	Water											
5	00ABFZ	1	4381	10841	64	61	4706400	1621370	374711507	42483	2952400	4407791		
6	00ABGA	1	4072	9361	62	60	4523550	1545555	355364493	40488	2827200	4180209		
7	00ABGB	1	4043	9921	68	65	4988625	1690333	388217913	44289	3109800	4566669		
8	00ABGC	1	4334	10108	56	53	4168450	1381472	322876111	36204	2595200	3798043		
9	00ABGD	1	4141	9235	3	0	214650	0	14784039	0	129600	173907		
10	00ABGE	1	4124	10271	9	52	556500	1345370	38328990	35259	336000	450870		
11	00ABGF	1	4245	9701	11	46	739350	1211188	50922801	31731	446400	599013		
12	00ABGG	1	3483	8812	55	52	4141950	1292334	300061236	33852	2533200	3529668		
13	00ABGH	1	3920	9412	11	53	707550	1371435	48732573	35973	427200	573249		
	1													

Results

Water Technology Optioneering Web-Interface

Centre for Water Systems

Preliminary Results – Local

Interaction of technology & urban growth Scenarios: Chelmsford

Preliminary Results – Regional Wider South East Supply-Demand Balance (2031)

Conclusions

- An integrated modelling framework is being finalised to allow assessment of the influence of infrastructure on the sustainability of urban areas under different spatial strategies.
- This builds on an established planning LUTI to incorporate service supply and demand, infrastructure options and local (tile) scale solutions.
- A flexible, web-based tool has been developed to aid quantification and visualisation of planning and infrastructure strategies.
- A water technology optioneering model has been developed to:
 - Explore the impact of spatial planning on water services and
 - Explore the influence of water services on spatial planning.
- Limitations: robust whole life cost data for alternative techs
- Future work: full scenario testing & comparison

EXETER SURREY LEEDS

ABERYSTWYTH

Towards an Integrated Modelling Framework for Sustainable Urban Development

David Butler

UDM, 06-09-12, Belgrade, Serbia