

The development of a flood damage assessment tool for urban areas

Michael Hammond, A. S. Chen, S. Djordjević, D. Butler, D. M. Khan, S. M. M. Rahman, A. K. E. Haque, O. Mark

Urban Drainage Modelling Conference, Belgrade, 04/09/2012

Presentation outline

- CORFU project and its objectives
- Development of the flood damage assessment tool
- Application of the tool Dhaka City
- Conclusions and future work

Presentation outline

- CORFU project and its objectives
- Development of the flood damage assessment tool
- Application of the tool Dhaka City
- Conclusions and future work

- <u>Co</u>llaborative <u>Research on Flood Resilience in Urban Areas</u>
- Funded by European Commission's Seventh Framework Programme
- Overall aims of the project
 - European and Asian cities to learn from each other through joint investigation to help create flood resilient cities
 - To **assess flood impacts** for different futures or scenarios
 - Develop and evaluate state-of-the-art flood resilience measures and strategies

Case study cities

Barcelona

Hamburg

Seoul

Beijing

Mumbai

Songdo

Dhaka

Nice

Taipei

Project overview

Presentation outline

- CORFU project and its objectives
- Development of the flood damage assessment tool
- Application of the tool Dhaka City
- Conclusions and future work

Flood impact typology

		05
/	Tangible	Intangible
Direct	Physical damage to assets •Buildings •Contents •Infrastructure	Loss of life Injuries Diseases Loss of ecological goods
Indirect	Loss of industrial production Traffic disruption	Inconvenience of post-flood recovery Increased vulnerability of population

Direct tangible flood damage assessment (ex-ante)

- Flood damage related to key parameters
 - Impact parameters characteristics of the floodwaters
 - e.g. flooded depth, flow velocity, flooded duration
 - Resistance parameters characteristics of the affected asset
 - e.g. building use, building materials
- Expressed through flood damage functions
 - Most typically a function of depth
- Different asset types will have different damage functions

Tool requirements ...

- Work on a common platform
- Work with spatial data
- Flexible with different data types (e.g. raster or polygon) with different resolutions
- User friendly

... and solutions

- Work on a common platform
- Work with spatial data
- Flexible with different data types (e.g. raster or polygon) with different resolutions
- User friendly
- Developed to work in ArcGIS
- Interacts with data via Python Scripts, using in-built geoprocessing functions and executables
- This ensures algorithms are transferable
- Single step functionality

Algorithm for raster flood data

Université

Technical challenges

- Asset data in polygon form
- Flood data (often) in raster form
- Polygon data must be converted to a raster format, while retaining the important information
- Spatial resolution issues
- Computational resources

25m grid

5m grid

1m grid

Presentation outline

- CORFU project and its objectives
- Development of the flood damage assessment tool
- Application of the tool Dhaka City
- Conclusions and future work

Dhaka City, Bangladesh

• Capital city of Bangladesh

FP7 Collaborative research on flood resilience in urban areas

- Rapidly growing mega-city
- Witnessed major flooding in 1998 and 2004
- Eastern side of city most prone to flooding

Dhaka City, Bangladesh

- Capital city of Bangladesh
- Rapidly growing mega-city
- Witnessed major flooding in 1998 and 2004
- Eastern side of city most prone to flooding

Flood map

Building / asset data

Identify Identify from: FI FI FI FI FI F2 F3 F4	<top-most layer=""></top-most>	
Hig Field Con CONS_YEAR FID_St_mar FID_Study_ FID_Study_ FLOOR HOLDING_NO HOLDING_NO HOLDING_N ID Landuse LOCALITY REMARKS ROAD_NAME ROAD_NAME	0,867.472 627,827.229 Meters Value 1980 12307 0 1 12136 2 Tejgaon I. A. Shaheed Tajuddin Road Polygon Pucca	
STR_USE1T STR_USE2T STR_USE3T	Commercial Activity Storage Godown BANGLADESH STATIONAR'Y OFFICE Government	

Depth-damage functions

Building types

Results

Damage per unit area

Legend

Building Damage

Medium

High

0 - 0.5

0.5 - 1.0

1.0 - 2.0

2.0 - 3.0

> 3.0

Kilometers

Maximum depth (m)

Low

Building types

Results

Damage per building

Presentation outline

- CORFU project and its objectives
- Development of the flood damage assessment tool
- Application of the tool Dhaka City
- Conclusions and future work

Conclusions and future work

- User-friendly, flexible tool
- The algorithms are transferrable to other GIS software packages
- The tool has been extended to incorporate calculations for multiple events to allow estimation of Expected Annual Damage
- It is being applied in the project case study cities to aid the evaluation of flood risk and the effectiveness of resilience measures
- The tool will be extended to include other types of flood impacts
 - e.g. health impact assessment

Thank you

Research on the CORFU (Collaborative research on flood resilience in urban areas) project was funded by the European Commission through Framework Programme 7, Grant Number 244047

> Michael Hammond Centre for Water Systems, University of Exeter, UK <u>m.j.hammond@exeter.ac.uk</u>

