9th International Conference on Urban Drainage Modelling Belgrade 2012

RECONSTRUCTION OF EXISTING CONVENTIONAL STORM DRAINAGE SYSTEM IN DEVELOPING COUNTRIES WITH INCLUSION OF BMPs ELEMENTS: A CASE STUDY

Žana Topalović¹ and Boris Jandrić²

¹ University of Banja Luka, Bosnia and Herzegovina, <u>ztopalovic@agfbl.org</u>, ² University of Banja Luka, Bosnia and Herzegovina, <u>bjandric@agfbl.org</u>

Introduction

- Storm drainage practice-to evacuate excess water "as soon as possible"
- Paper shows potential effects of conventional system reconstruction on:
- 1. stormwater quantity
- 2. stormwater quality
- 3. cost decrease,
- with inclusion of BMPs elements:
 - a. dry detention ponds
 - b. vegetated swales
- Case study: three mathematical model setup simulation results comparison

Methods

- Simulations of rainfall-runoff processes in StormNET
- Simple pollution model included (pollution build-up/wash-off process)-TSS, TP and BOD concentration simulated
- One raingauge assigned-various rainfall events (50%, 20% and 10% prob. of exceedance)
- Model's sub-catchment characteristisc, conveyance length and pollution input data are the same

Case study-present state

12 sub-catchments Input data

- a. Pervious area depression depth
- b. Impervious area depression depth
- c. Soil conductivity
- d. Manning's roughness for pervious areas 0.35
- e. Manning's roughness for impervious areas 0.018
- f. Suction head (for Green-Ampt method) 61 mm
- g. Initial moisture deficit (porosity minus initial moisture)
 0.25

4 mm 1.5 mm 36 mm/h 0.35

II Conventional with source control

 Same as previous except impervious surfaces are decreased-roofs are connected to pervious areas

III Alternative model

- Reconstructed model II
- D1 131m³
- D2 35m³
- Swales 260m instead of pipes

Pollution model

- Typical pollution removals for chosen BMPs elements:
 - TSS 30-65%,
 - TP 15-45% and
 - BOD ~30%.

Cost analysis

Comparison of construction costs

- Conventional system prices
- Alternative system prices

Runoff hydrographs comparison

 Catchment runoff v. rainfall duration and model setup

Percentage of peak flow and runoff volume decrease in comparison to conventional model

Pollution removal in alternative model

Cost analysis

Construction work	Cost [€]
Construction site preparation	13.112,00
Earthworks	65.149,00
Concrete works	10.129,00
Masonry	6.685,00
Pipe purchase and installation	39.362,00
Other (additional) works	26.276,00
Σ	160.713,00

Construction w elements)	ork (conv	entional	Cost [€	3	
Construction site preparation			9.995,00		
Earthworks			52.830,00		
Concrete works			8.840,0	8.840,00	
Masonry	4.934,00				
Pipe purchase and installation			17.706,00		
Other (additional) works			20.040,00		
BMPs element	Size	Unit	Cost [€ units]	Cost [€]	
Detention pond (1+2)	166	m ³	12	1992	
Swales	304	m²	8	2432	
Σ			118.769	9,00	

Save 42,000€ or 26% cheaper

Conclusions

- Impact of urbanization and design of conventional drainage system enlarge catchment runoff for almost 5 times
- With simple source control both peak runoff and runoff volume are decreased for cca 30%
- Alternative system with included sustainable decreases peak runoff and runoff volume for cca 45%,
- Section Pollution are removed for 8-30%
- Cost savings are 26%
- Reconstruction of conventional system is simple with huge positive effects

THANK YOU FOR YOUR ATTENTION

Reconstruction of existing conventional storm drainage system in developing countries with inclusion of BMPs elements: Case study

Contact: Žana Topalović University of Banja Luka Faculty of Architecture and Civil Engineering Hydraulic department

Mobile: +387 65 752 327 Phone: +387 51 462 616 Fax: +387 51 462 543 E-mail: ztopalovic@agfbl.org