RECONSTRUCTION OF EXISTING CONVENTIONAL STORM DRAINAGE SYSTEM IN DEVELOPING COUNTRIES WITH INCLUSION OF BMPs ELEMENTS: A CASE STUDY

Žana Topalović¹ and Boris Jandrić²

¹ University of Banja Luka, Bosnia and Herzegovina, ztopalovic@agfbl.org
² University of Banja Luka, Bosnia and Herzegovina, bjandric@agfbl.org
Introduction

- Storm drainage practice—to evacuate excess water “as soon as possible”
- Paper shows potential effects of conventional system reconstruction on:
 1. stormwater quantity
 2. stormwater quality
 3. cost decrease,

with inclusion of BMPs elements:
 a. dry detention ponds
 b. vegetated swales

- Case study: three mathematical model setup simulation results comparison
Methods

- Simulations of rainfall-runoff processes in StormNET
- Simple pollution model included (pollution build-up/wash-off process) - TSS, TP and BOD concentration simulated
- One raingauge assigned - various rainfall events (50%, 20% and 10% prob. of exceedance)
- Model’s sub-catchment characteristic, conveyance length and pollution input data are the same
Case study-present state

12 sub-catchments

Input data

a. Pervious area depression depth \(4 \text{ mm} \)
b. Impervious area depression depth \(1.5 \text{ mm} \)
c. Soil conductivity \(36 \text{ mm/h} \)
d. Manning's roughness for pervious areas \(0.35 \)
e. Manning's roughness for impervious areas \(0.018 \)
f. Suction head (for Green-Ampt method) \(61 \text{ mm} \)
g. Initial moisture deficit (porosity minus initial moisture) \(0.25 \)
I Conventional model
II Conventional with source control

- Same as previous except impervious surfaces are decreased - roofs are connected to pervious areas.
III Alternative model

- Reconstructed model II
- D1 131m³
- D2 35m³
- Swales 260m instead of pipes
Pollution model

- Typical pollution removals for chosen BMPs elements:
 - TSS 30-65%,
 - TP 15-45% and
 - BOD ~30%.
Cost analysis

- Comparison of construction costs
 - Conventional system prices
 - Alternative system prices
Results

- Runoff hydrographs comparison
Results

- Catchment runoff v. rainfall duration and model setup
Results

Percentage of peak flow and runoff volume decrease in comparison to conventional model.
Results

- Pollution removal in alternative model
Results

- **Cost analysis**

<table>
<thead>
<tr>
<th>Construction work</th>
<th>Cost [€]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction site preparation</td>
<td>13.112,00</td>
</tr>
<tr>
<td>Earthworks</td>
<td>65.149,00</td>
</tr>
<tr>
<td>Concrete works</td>
<td>10.129,00</td>
</tr>
<tr>
<td>Masonry</td>
<td>6.685,00</td>
</tr>
<tr>
<td>Pipe purchase and installation</td>
<td>39.362,00</td>
</tr>
<tr>
<td>Other (additional) works</td>
<td>26.276,00</td>
</tr>
<tr>
<td>Σ</td>
<td>160.713,00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Construction work (conventional elements)</th>
<th>Cost [€]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction site preparation</td>
<td>9.995,00</td>
</tr>
<tr>
<td>Earthworks</td>
<td>52.830,00</td>
</tr>
<tr>
<td>Concrete works</td>
<td>8.840,00</td>
</tr>
<tr>
<td>Masonry</td>
<td>4.934,00</td>
</tr>
<tr>
<td>Pipe purchase and installation</td>
<td>17.706,00</td>
</tr>
<tr>
<td>Other (additional) works</td>
<td>20.040,00</td>
</tr>
<tr>
<td>Σ</td>
<td>118.769,00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BMPs element</th>
<th>Size</th>
<th>Unit</th>
<th>Cost [€/units]</th>
<th>Cost [€]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detention pond (1+2)</td>
<td>166</td>
<td>m³</td>
<td>12</td>
<td>1992</td>
</tr>
<tr>
<td>Swales</td>
<td>304</td>
<td>m²</td>
<td>8</td>
<td>2432</td>
</tr>
<tr>
<td>Σ</td>
<td></td>
<td></td>
<td></td>
<td>118.769,00</td>
</tr>
</tbody>
</table>

Save 42,000€ or 26% cheaper
Conclusions

- Impact of urbanization and design of conventional drainage system enlarge catchment runoff for almost 5 times
- With simple source control both peak runoff and runoff volume are decreased for cca 30%
- Alternative system with included sustainable decreases peak runoff and runoff volume for cca 45%,
- Pollution are removed for 8-30%
- Cost savings are 26%
- Reconstruction of conventional system is simple with huge positive effects
THANK YOU FOR YOUR ATTENTION

Reconstruction of existing conventional storm drainage system in developing countries with inclusion of BMPs elements: Case study

Contact:
Žana Topalović
University of Banja Luka
Faculty of Architecture and Civil Engineering
Hydraulic department

Mobile: +387 65 752 327
Phone: +387 51 462 616
Fax: +387 51 462 543
E-mail: ztopalovic@agfbl.org