An optimization tool for urban drainage network design under <u>uncertainty</u>

Omar Andino, **Assela Pathirana**, Solomon Seyoum and Damir Brdjanovic

Optimization of UDN Under

Uncertainty

- Optimization
- Multi-Objective Optimization
- Adding uncertainty (Robustness)
- Nuts-and-Bolts
- Case Study
- Discussion

Optimization

- Sizing four reservoirs.
- Larger reservoirs: Costly construction.
- Smaller reservoirs: Costly floods.
- Optimal size where total

cost= Flood + Construction

Optimal capacity of four reservoirs. (After Maharjan, et al, 2009)

minimized.

Evolutionary Algorithms

- Based on (Darwinian) evolution.
- Good for <u>complex or</u> <u>unknown</u> relationships between input and output.
- GA, NSGA-II, etc.

Nature's milestones indicating evolution of the eye.

Algorithms

Mutli-Objective Optimization

- What is the minimum expected damage for each level of investment?
- A good negotiation/communication instrument.

Dangers of Optimization

 $optimal = \frac{1}{redundant}$

Networks

Connecting four nodes.

A network with degree of redundancy

Optimal network. Zero redundancy.

Problem

- Input parameters uncertain!!!!
- Slight change should not topple over the edge

Recourse

Traditional

 Optimize
 Apply Factor of Safety (FOS)

Fine when 'model' is known, and
... simple. Problems with FOS in complex problems.

- Arbitrary
 - Input uncertainty not linked to FOS.

X₂

X₃

Explicitly handling Uncertainty

- Monte-Carlo experiments.
 - A number of random samplings of Xi
 - Evaluate Y
- "Robust-Optimization"
- More efficient way of sampling.

Latin Hypercube Sampling (For Efficiency)

The Algorithm

- Evaluate individual solutions over number of generations.
- To be 'Fit' has to survive a minimum number of generations.

The case study

Porto Alegre, Brazil

Areia Basin

- 35 circular conduits.
- Planning for future.
- Catchment hydrology linked to population density.
- P.D. used as input variable.

Results

- Inpt: 10% uncertainty in PD.
- Robust Optim.
 Compared with (vanilla) MOO.

ROBUST			MOO		
Point	Cost (R\$ Millions)	Flooding (m ³)	Point	Cost (R\$ Millions)	Flooding (m ³)
А	10.710	16,453,720	1	10.180	16,549,520
В	25.403	10,815,600	2	24.387	10,376,040
С	45.284	7,322,470	3	45.087	6,735,952

Discussion

- More formal treatment of output uncertainty:
 - Explicitly linked to input
- Feasibility (Computational)
- A lot of scope for future scenario studies.
- Very easy to parallelize (on PC clusters).

An optimization tool for urban drainage network design under uncertainty Omar Andino, Assela Pathirana,

Solomon Seyoum and Damir Brdjanovic

assela@pathirana.net

