Modelling Internal Boundary Conditions of a Sewer Network

Nuno Melo, Jorge Leandro, James Shucksmith, Matteo Rubinato, Slobodan Djordjevic, Adrian J. Saul, Helena Ramos, João L. M. P. de Lima

Structure of the Presentation

Structure of the Presentation	Introduction
Introduction	Introduction
maoduction	Methodology
Methodology	
Physical Model	Physical Model
Hydraulic Numerical Models	Hydraulic Numerical Models
Data Analysis	Data Analysis
Results and Discussion	
	Results and Discussion
Conclusion	
	Conclusion

Introduction

Structure of the Presentation

Introduction

Methodology

Physical Model

Hydraulic Numerica Models

Data Analysis

Results and Discussion

Conclusion

Flooding in Manila - Philippines

Flooding in UK - 2012

Sewer system flooding

Introduction

Structure of the Presentation

Introduction

Methodology

Physical Model

Hydraulic Numerica Models

Data Analysis

Results and Discussion

Conclusion

The aim of the work is to validate the internal boundary conditions of a scale model of an urban drainage system.

The facility is a scale model of an urban drainage system.

The calibration of the models is done using the experimental data of two storm events.

Methodology

Methodology

Introduction

Methodology

Physical Model

Hydraulic Numerical Models

Data Analysis

Results and Discussion

Conclusion

SIPSON – "Simulation of Interaction between Pipe flow and Overland flow in Networks".

Djordjevic (2001)

SWMM – "Storm Water Management Model".

Rossman (2010)

Hydraulic Numerical Models

Methodology

Structure of the Presentation

Introduction

Vethodology

Physical Model

Hydraulic Numerica Models

Data Analysis

Results and Discussion

Conclusion

It was found that the flow Froude number is always less than unity irrespectively of the event, indicating that we are in the presence of subcritical flow.

According to Zhao et al. (2006) subcritical flow in sewer junctions has relatively small energy losses.

In SIPSON the head losses considered in manholes was Special Type 3 (least energy loss considered in SIPSON).

In SWMM, the head losses in manholes are calculated considering losses coefficients on their inlet and outlet pipes.

Structure of the Presentation

Variation of water depth

Introductior

Methodology

Physical Model

Hydraulic Numerical Models

Data Analysis

Results and Discussion

Conclusion

12th December 2008

17th January 2009

SWMM results

Structure of the Presentation

Introduction

Methodology

Physical Model

Hydraulic Numerical Models

Data Analysis

Results and Discussion

Conclusion

Variation of flow rate at manholes - event of 12th December 2008

SIPSON results

without considering head losses in manholes

Structure of the Presentation

Introduction

Methodology

Physical Model

Hydraulic Numerical Models

Data Analysis

Results and Discussion

Conclusion

Variation of flow rate at manholes - event of 17th January 2009

SIPSON results

SWMM results

Conclusion

Structure of the Presentation

Introduction

Vlethodology

Physical Model

Hydraulic Numerica Models

Data Analysis

Results and Discussion

Conclusion

SIPSON calculates the flow depth in manholes taking into consideration the depth increase due to transfer of kinetic energy to potential energy.

SWMM Flow depth inside manholes is equal to the average between the pipes upstream and downstream values.

In this experimental facility SIPSON reproduced fairly well the water depths in the manholes.

Thank you for your attention

Nuno Melo Email contact: nuno_melo@ipg.pt

> University of Coimbra Civil Engineering Department

IMAR Institute of Marine Reseach

