Weather radar and heavy rainfall - how to estimate the real amount of precipitation?

Thomas Einfalt hydro & meteo GmbH & Co. KG, Lübeck

Overview

Motivation

- "Cooking" good quality data
 - Radar data quality control
 - Rain gauge data quality control
 - Transformation reflectivity → intensity
- Further analyses: statistics
- Discussion and outlook

Overview

Motivation

- "Cooking" good quality data
 - Radar data quality control
 - Rain gauge data quality control
 - Transformation reflectivity → intensity
- Further analyses: statistics
- Discussion and outlook

Motivation: extreme event

hydro & meteo GmbH & Co. KG w_{etter} + w_{asser}

Original radar data ++ +÷ +÷ 8.016.024.032.040.048 <mark>56.064.0</mark>72.0<mark>80.0</mark>88.096.0<mark>104.</mark>112.<mark>120.</mark> 0. mm: Rainsum by SCOUTView: 28 08 2002 06:36 - 29 08 2002 06:30 Elevation [°]: 0.0

hydro & meteo GmbH & Co. KG

+ Wassel

Adjusted radar data

hydro & meteo GmbH & Co. KG wetter + wasser

Motivation

- Rain gauges: peak missed
- Radar: too low
- We need:
 o correct level of values
 o At the right location

How to get there?

Overview

Motivation

- "Cooking" good quality data
 - Radar data quality control
 - Rain gauge data quality control
 - Transformation reflectivity → intensity
- Further analyses: statistics
- Discussion and outlook

"cooking" good precipitation data

Radar data quality

- Clutter
- Beam blockage
- Bright band
- Attenuation
- Many correction algorithms, many recipes!
- Rain gauge quality
 - Wrong zero values
 - Wrong timing
 - Mainly manual
 - Taking 50% of work time to produce high quality data!

hydro & meteo GmbH & Co. KG Wetter + Wasser

Data quality control of gauge data

Transformation reflectivity to intensity

* ZR

hydro & meteo GmbH & Co. KG wetter + wasser

Radar originalstandard ZR

Radar original ZR = 256R^{1.42}

hydro&meteo GmbH & Co. KG wetter + wasser

Z-R relationship

Here the results show

	Rain at	Rac	lar	absolute		mean pe	rcentage	absolute percentage			
	gauge	mod.	conv.	difference		differ	ence	difference			
Gauge	[mm]	[mm]	[mm]	mod.	conv.	mod.	conv.	mod.	conv.		
Eitorf	70.3	57.42	61.99	12.88	8.31	-18.32	-11.82	18.32	11.82		
Lascheid	50.4	54.65	56.74	4.25	6.34	8.43	12.57	8.43	12.57		
Hanfmühle	31.3	31.77	30.21	0.47	1.09	1.52	-3.50	1.52	3.50		
Kuchenbach	36.5	41.23	38.42	4.73	1.92	12.96	5.27	12.96	5.27		
Parameter Sum				22.33	17.66	4.58	2.53	41.22	33.16		

Z-R relationship

Here the results show

	Rain at	Rad	lar	abso	lute	mean pe	rcentage	absolute percentage			
	gauge	mod.	conv.	differ	ence	differ	ence	difference			
Gauge	[mm]	[mm]	[mm]	mod.	conv.	mod.	conv.	mod.	conv.		
Eitorf	70.3	57.42	61.99	12.88	8.31	-18.32	-11.82	18.32	11.82		
Lascheid	50.4	54.65	56.74	4.25	6.34	8.43	12.57	8.43	12.57		
Hanfmühle	31.3	31.77	30.21	0.47	1.09	1.52	-3.50	1.52	3.50		
Kuchenbach	36.5	41.23	38.42	4.73	1.92	12.96	5.27	12.96	5.27		
Parameter Sum				22.33	17.66	4.58	2.53	41.22	33.16		

- The second Z-R relationship is better: event sum 103 mm instead of 95 mm
- Automated procedure for test ?
- → Good rain gauge values are more important ...

Overview

Motivation

- "Cooking" good quality data
 - Radar data quality control
 - Rain gauge data quality control
 - Transformation reflectivity → intensity
- Further analyses: statistics
- Discussion and outlook

Further Analyses

- Comparison of highest pixels to areal rainfall: measure of homogeneity
- Extreme Value Statistics

Areal rainfall vs. peak values

Statistics for precipitation function of duration and return period

KOSTRA-DWD 2000

Deutscher Wetterdienst - Hydrometeorologie -

Niederschlagshöhen und -spenden nach KOSTRA-DWD 2000

Niederschlagshöhen und -spenden für Eitorf

Zeitspanne : Januar - Dezember Rasterfeld : Spalte: 14 Zeile: 58

Т	0,5		1,0		2,0		5,0		10,0		20,0		50,0		100,0	
D	hN	rN	hN	rN	hN	rN										
5,0 min	3,4	113,3	5,1	170,0	6,8	226,7	9,1	301,7	10,8	358,4	12,5	415,1	14,7	490,1	16,4	546,8
10,0 min	5,8	97,4	8,2	136,4	10,5	175,4	13,6	227,0	16,0	266,0	18,3	305,1	21,4	356,7	23,7	395,7
15,0 min	7,4	82,5	10,3	113,9	13,1	145,2	16,8	186,7	19,6	218,1	22,4	249,4	26,2	290,9	29,0	322,2
20,0 min	8,5	70,9	11,7	97,8	15,0	124,6	19,2	160,1	22,4	187,0	25,7	213,8	29,9	249,3	33,1	276,1
30,0 min	9,8	54,6	13,7	76,2	17,6	97,8	22,7	126,3	26,6	147,9	30,5	169,4	35,6	197,9	39,5	219,5
45,0 min	10,8	39,9	15,5	57,2	20,1	74,6	26,3	97,5	31,0	114,8	35,7	132,2	41,9	155,1	46,5	172,4
60,0 min	11,2	31,0	16,5	45,8	21,8	60,7	28,9	80,3	34,3	95,1	39,6	110,0	46,7	129,6	52,0	144,4
90,0 min	13,1	24,3	18,4	34,0	23,7	43,8	30,6	56,7	35,9	66,5	41,2	76,3	48,2	89,2	53,5	99,0
2,0 h	14,6	20,3	19,8	27,6	25,1	34,8	32,0	44,5	37,2	51,7	42,5	59,0	49,4	68,6	54,6	75,9
3,0 h	16,9	15,7	22,1	20,5	27,3	25,3	34,1	31,6	39,3	36,4	44,5	41,2	51,3	47,5	56,5	52,3
4,0 h	18,7	13,0	23,9	16,6	29,0	20,1	35,8	24,9	40,9	28,4	46,0	32,0	52,8	36,7	58,0	40,3
6,0 h	21,5	10,0	26,6	12,3	31,7	14,7	38,4	17,8	43,4	20,1	48,5	22,5	55,2	25,6	60,3	27,9
9,0 h	24,6	7,6	29,6	9,1	34,6	10,7	41,3	12,7	46,3	14,3	51,3	15,8	57,9	17,9	62,9	19,4
12,0 h	27,0	6,3	32,0	7,4	37,0	8,6	43,5	10,1	48,5	11,2	53,5	12,4	60,0	13,9	65,0	15,0
18,0 h	28,3	4,4	34,8	5,4	41,2	6,4	49,7	7,7	56,1	8,7	62,6	9,7	71,1	11,0	77,5	12,0
24,0 h	29,6	3,4	37,5	4,3	45,4	5,3	55,8	6,5	63,8	7,4	71,7	8,3	82,1	9,5	90,0	10,4
48,0 h	36,7	2,1	45,0	2,6	53,3	3,1	64,2	3,7	72,5	4,2	80,8	4,7	91,7	5,3	100,0	5,8
72,0 h	46,7	1,8	55,0	2,1	63,3	2,4	74,2	2,9	82,5	3,2	90,8	3,5	101,7	3,9	110,0	4,2

- Wiederkehrzeit (in [a]): mittlere Zeitspanne, in der ein Ereignis einen Wert einmal erreicht oder überschreitet

Niederschlagsdauer einschließlich Unterbrechungen (in [min, h])

hN - Niederschlagshoehe (in [mm])

rN - Niederschlagsspende (in [l/(s*ha)])

Statistics - why?

hydro & meteo GmbH & Co. KG Wetter + Wasser

Statistics - why?

hydro & meteo GmbH & Co. KG wetter + Wasser

Statistics - how ? Event characteristics

hydro & meteo GmbH & Co. KG wetter + Wasser

Statistics - how ? Event characteristics

hydro & meteo GmbH & Co. KG wetter + wasser

Overview

Motivation

- "Cooking" good quality data
 - Radar data quality control
 - Rain gauge data quality control
 - Transformation reflectivity → intensity
- Further analyses: statistics
- Discussion and outlook

Discussion and Outlook (1)

- Extreme events are difficult to analyse
- All available data should be used
- Rain gauge data are not sufficient
- Radar data alone are not sufficient either
- Only a combination of both, with a thorough data quality control permits analyses
- Methods to verify radar data quality and Z-Rassumptions have to be employed

Discussion and Outlook (2)

- A detailed image is produced on the precipitation distribution in time and space
- Statistics can be obtained
- data can be cross-compared to damage data
- The future are
 - → these informations on the web in near real-time:
 - > www.hydrocity.com

HydroCity .com

HydroCity – <mark>online platform as a</mark> bridge to a climate adaptive city

Call: climate adaptation and Water

nydro & meteo GmbH & Co. I

hydro&meteo GmbH & Co. KG

er + Wasser

Thank you for your attention

http://www.hydrometeo.de

hydro & meteo GmbH & Co. KG wetter + wasser