Hydraulic Behaviour of a Gully Under Surcharge Conditions

Pedro Lopes, Jorge Leandro, Rita Carvalho and Ricardo Martins

University of Coimbra Civil Engineering Department

IMAR Institute of Marine Reseach

2009

Surcharge Events

Introduction

- **Objectives**
- Experimental Setup
- Mesh Generation
- Numerical Simulations
- Results
- Conclusions

2- Montreal, Quebec, Canada, 30/05/2012

1- http://joelcayford.blogspot.pt/2009/10/isnt-aislings-death-stormwater-wake-up.html 2- http://youtu.be/I5rZOFW0I1s

Objectives

Introduction	Behaviour;	-	
Objectives			
Experimental Setup	Comparison;	-	
Mesh Generation	Validation.	_	
Numerical Simulations			
Results			
Conclusions			

Experimental Setup

1/100

Introduction

Objectives

Experimental Setup

Mesh Generation

Numerical Simulations

Results

Conclusions

Channel

50 cm width 1% slope

✤ Gully

60 cm length 30 cm width 30 cm height

Pipe
 8 cm diameter

1 - Gully with Simple Inlet (GSI)

Introduction

Objectives

Experimental Setup

Mesh Generation

Numerical Simulations

Results

Conclusions

Regular and Non-Uniform

- Ranging spaces 1 to 4 cm
- Created with *blockMesh* utility in OpenFOAM

Boundary conditions

(Adapted from Martins,R.)

1 - Gully with Simple Inlet (GSI)

Inicial Conditions

Introduction

Objectives

Experimental Setup

Mesh Generation

Numerical Simulations

Results

	Q (m³/s)	D (m)	V _i (m/s)
Q6	0.006	0.08	1.194

OpenFOAM simulations

Introduction

Objectives

Experimental Setup

Mesh Generation

Numerical Simulations

Results

Conclusions

OpenFOAM version 1.7.1

Solver interFOAM

PISO algoritm

LES

Turbulence Approach

Introduction

Objectives

Experimental Setup

Mesh Generation

Numerical Simulations

Results

Conclusions

LES

$$\begin{aligned}
G_1(x, x', \Delta) &= \begin{cases} 1/\Delta^3 & |x - x'| \leq \Delta/2 \\ 0 & |x - x'| > \Delta/2 \end{cases} \\
G_2(x, x', \Delta) &= \left(\frac{\gamma}{\pi\Delta^2}\right)^{3/2} exp\left(-\gamma \frac{|x - x'|^2}{\Delta^2}\right)^{3/2} \\
G_3(x, x', \Delta) &= \prod_{i=1}^3 \frac{sin[(x_i - x'_i)/\Delta]}{(x_i - x'_i)}
\end{aligned}$$

$$\phi(x,t) = \bar{\phi}(x,t) + \phi'(x,t)$$

RANS

 $\nabla(\rho \bar{U}) = 0$

$$\frac{\partial \rho \bar{U}}{\partial t} \vdash \nabla (\rho \bar{U} \bar{U}) = g - \nabla \bar{p} + \nabla (\nu \nabla \bar{U}) + \overline{U'U'}$$

$$\overline{U'U'} = \nu_t (\nabla U + (\nabla U)^T) + \frac{2}{3}kI \qquad k = \frac{1}{2}\overline{U'U'} \qquad \nu_t = C_\mu \frac{k^2}{\varepsilon} \qquad \varepsilon = \nu \overline{U'U'} : \nabla U'$$

Introduction

Objectives

Experimental Setup

Mesh Generation

Numerical Simulations

Results

Conclusions

Distant of the experimental results

2 - Gully with Inlet Curve (GIC)

Introduction

Objectives

Experimental Setup

Mesh Generation

Numerical Simulations

Results

Conclusions

Non-Regular and Non-Uniform (Thetraedrical cells)

✤ Ranging spaces 1 to 1.5 cm

Created with SALOME-Platform

Influence of the curve + curve losses

Boundary conditions

3 - Gully with Inlet Curve and Energy Losses (GICEL)

Introduction

Objectives

Experimental Setup

Mesh Generation

Numerical Simulations

Results

Conclusions

Non-Regular and Non-Uniform (Thetraedrical cells)

- ✤ Ranging spaces 1 to 1.5 cm
- Created with SALOME-Platform
- Influence of the curve + curve losses + installation losses

Boundary conditions

MESH 3 - Gully with Inlet Curve and Energy Losses (GICEL)

Inicial Conditions

	Q (m³/s)	D (m)	V _i (m/s)
Q2	0.002	0.06	0.707
Q4	0.004	0.06	1.414
Q6	0.006	0.06	2.122

- Introduction
- Objectives
- Experimental Setup
- Mesh Generation
- Numerical Simulations
- Results
- Conclusions

Contour Average

Introduction

Objectives

Experimental Setup

Mesh Generation

Numerical Simulations

Results

Conclusions

Limits of 95% confidence interval for the average

Pressure at left and right wall

Introduction

Objectives

Experimental Setup

Mesh Generation

Numerical Simulations

Results

Velocity and pressure at gully bottom

Introduction

Objectives

Experimental Setup

Mesh Generation

Numerical Simulations

Results

Stream Lines

Tests performed

Objectives

Experimental Setup

Mesh Generation

Numerical Simulations

Results

Velocities in directions x, y and z

- Introduction
- Objectives
- Experimental Setup
- Mesh Generation
- Numerical Simulations
- Results
- Conclusions

Angular variation of velocity

- Introduction
- Objectives
- Experimental Setup
- Mesh Generation
- Numerical Simulations
- Results
- Conclusions

Introduction

Objectives

Experimental Setup

Mesh Generation

Numerical Simulations

Results

Conclusions

Experimental Q4

Numerical Q4 (using laminar)

Introduction

Objectives

Experimental Setup

Mesh Generation

Numerical Simulations

Results

Conclusions

Experimental Q4

Numerical Q4 (using LES)

Further testing, using LES

Conclusions

Introduction

Objectives

Experimental Setup

Mesh Generation

Numerical Simulations

Results

Conclusions

U	S	ef	ul	to	ol

Mesh generation and experimental setup;

Fully characterized.

Thank you for your attention

Pedro Lopes Email contact: pmlopes@student.dec.uc.pt

> University of Coimbra Civil Engineering Department

IMAR Institute of Marine Reseach

