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Dynamic Time Warping improves
sewer flow monitoring
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What's the matter?



eawag
aquatic research 000

Quality control of discharge measurements

Problem

 Flow meters show considerable errors under normal operating
conditions in sewers.

 Discharge
— Ultrasonic flow meters: 10%
— Tracer dilution methods: 6% to 16%
— Venturi: 12% to 20%

» Ultrasonic velocity sensors
— Single-point: 14 - 18%
— Multi-point: 4 - 5%

Hoppe (2009), Smits (2008)




Quality control of discharge measurements

Manual
calibration in the
lab or field is
expensive.

Usually only point
calibration once

per year or 3
months.

During dry
weather

conditions!
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Quality control of discharge measurements
Create independent information on flow velocities

ldea

 Use “natural” tracers in wastewater to obtain independent
Information on average flow velocities

= Time shift of characteristic patterns between 2 measuring
locations A and B contains information on travel time 6.
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Quality control of discharge measurements
Create independent information on flow velocities

ldea

 Use “natural” tracers in wastewater to obtain independent
iInformation on average flow velocities

= Time shift of characteristic patterns between 2 measuring
locations A and B contains information on travel time 6.

= Length of the sewer section is obtained from map or field
measurements.

L
V(L) =~ —
(t) 5
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Methods
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Ideal plug-flow reactor
Concept

Equations:

Packet A: 2At — At(Q; + Q,) =V

Packet B: 2At — At(Q, +0Q5) =V

Packet C: 34t — At(Q5 + 0, + 0c) =V
Packet D: 44t — At(Q, + O+ 0y +05) =V




Ideal plug-flow reactor

4 Equations: At(Q1 +0Q,) =V
At(Q, +Q3) =V
At(Qs + Qs+ Qs) =V
At(Qs+ Qs+ Qs+ Q7)) =V
Matrix notation: AQ = b | with
1 1.0 0 0 0 O
1 — O 1.1 0 0 O0 O
0 01 11 0 0]/
O 0 01 1 1 1

Q=(Q1,Qz2 -, Q) and b =(1,1,1,1)"

How do we get the residence times of the water packets?
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Dynamic Time Warping

« “Warps” two sequences non-linearly in the time domain so that
the dissimilarity is minimized

 Was originally developed for speech recognition
e |s a standard technique for non-linear pattern matching

time time

 Has been used to successfully estimate flow

distribution in hydraulic flow dividers at WWTPs.
Durrenmatt (2011)




Dynamic Time Warping

Time series A
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1 Time series B

¥ _—— ,Warping-Path”

R — (p,q)=(8/10)
v — HDTW — (10 — 8)At
LA = 2At

(Keogh und Pazzani, 2000)




Dynamic Time Warping

Signal B

Distance Matrix D

Signal A
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for the warping
path:

o Starts and ends in
opposite corners

e continuous
e Steps are restricted

o Pattern appears first in
A, then in B.




Dynamic Time Warping
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Added stochasticity to
avoid local optima

1.

Add noise to
observations

Iterate computation of
warping paths
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Dynamic Time Warping
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'BDTW=0?

 The estimated travel time does not equal the true travel time
In real systems (Dispersion, Reaction).

lllustration: Tracer experiment

Cau(t) C,p(1)
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Numerical experiments
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Numerical experiments

e Testing the method on virtual data to determine the field of
application

 “Benchmark Simulation Environment”
— Inflow generator (Discharge, Temperature)
— Hydrodynamic heat transport model (Aguasim)
— Sensor model (BSM 1, Class “A”)

Signal A Manhole A
T 3 Sensor A___ __7_""‘*-———-__,__7___7__
A Ta T Manhole B
Qin i Rowmeter 7___7__7_;"*‘-'
Tin | (Vh) &nsorB: T

TB
— —— — — T _____.,I
x T
— — —
|

Signal B
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Results (1)

Example
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Results (1)
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Results (1)
Accuracy of DTW velocity estimates

Estimates
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Confirms the theorectical considerations.



Results (2)

Dispersion and heat exchange
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Results (3)

Sensor response time and error
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Results (4)

Sampling frequency
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Application
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Real-world case study

» Testing the performance of 2 flow meters
 Measurement campaign: 2 weeks

o 2x Onset TMC6-HD thermistor w. HOBO logger
e Accuracy: 0.25 °C ﬁ
 Resolution: 0.03 °C
* Tip/90: 30s (90%)

| onset
T

Pra
LER R}

s W N =
v - - -

‘mnnsdala oy
gger
® 4 ext channels




Results (5)

Online analysis

Temperature [YC]
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b) Online analysis (both flow meters)
| | | 1 | ]
— Flow meter 1

— Flow meter 2
B — DTW estimate
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Results (6)

Offline analysis
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c) Offline Analysis: Flow meter 1
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c) Offline Analysis: Flow meter 2
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This looks nice. But...
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Discussion

* Pre-processing is important! High-pass filtering is better than
normalization of the Temperature signals.

e Results chould be improved by using other or multiple tracers
with near-conservative behaviour (e.g., Conductivity).

* Using a physically-based model for data analysis could also be
promising.

Durrenmatt, D.J., D. Del Giudice, J. Rieckermann et al., Dynamic time warping
improves sewer flow monitoring (submitted to Water Research)
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Discussion

Comparison to Cross-correlation with sliding windows

XCORR DTW
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Figure B.6: Comparison of the estimated velocity v.., with the true velocity vy for the XCORR (left) and DTW
method (right). Accepted data points are indicated, as well as the weighted average with the 99% coverage intervals.
For this figure, a total of N values within the 10% percentile of the standard deviation of the paths were accepted.
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Conclusions
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Conclusions

« Dynamic time warping (DTW) can retrieve sewer flow velocities
from online measurements of wastewater quality.

« DTW extracts travel times from the temporal shift between
upstream and downstream patterns by computing a non-linear
warping path which maximizes the similarity between both
patterns.

 The method is very well suited for the conditions found in
typical sewer systems. Errors are estimated to less than 7.5%.

 The simple set-up and low experimental costs for sensors make
It a practicable approach to diagnose sewer flow monitoring
devices.
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