

MONASH University

CRC for Water Sensitive Cities

Development of an integrated software tool for strategic planning and conceptual design of water sensitive cities

C. B. S. Dotto, R. Allen, T. Wong and <u>A. Deletic</u>

An Australian Government Initiative

A research program that aims to harness the potential of storm water to overcome water shortages, reduce urban temperatures, and improve the landscape and livability of Australian cities

- \$14 million and 5 year long project
- We are ½ way there!

Software tool for strategic planning and conceptual design of <u>stormwater management</u> <u>systems</u> in a water sensitive city

 Support the planning and conceptualisation of WSUD scenarios, and subsequently evaluate the performance of different scenarios across a broad range of measures

Schematic diagram

CRC for Water Sensitive Cities

Community Needs

 identify urban water needs of local communities that can be influenced by stormwater management

Water Supply City	Sewered City	Drained City	Waterways City	Water Cycle City	Water Sensitive City
Water – potable use	Wastewater management	Stormwater disposal	Stormwater hydrology &	Total water cycle management	Thermal comfort
Water – non- potable use		Pluvial flood risk reduction	quality Improved habitat	Integrated water systems	Identity & Vision

• inform the evaluation of scenario

contributions to liveability within the

scenario assessment component of the

model

Existence

•Secure water supplies •Public health •Public safety

Property protection
Economic activity

Relatedness •Recreation

•Recreation •Social cohesion •Beauty •Comfort •Ecological health Growth •Achievement •Identity •Purpose •Control & Independence •Equity & Social justice •Intergenerational equity

Urban Planning

ting Zoning Map

- relevant high level urban planning
 - guidance and regulations
- participatory input from stakeholders

Contraction of the second

e Capital Ho

Site Plan North

ingletree Estates

• identify current local strategic and statutory planning considerations &

Transect Based Regulation Plan

determine additional contribution

Community Receptivity

 results and observations from studies focused on community norms and community engagement

 guide on identifying policy tools and capacity building strategies to accelerate the implementation of WSUD technologies and practices and to increase industry/community receptivity

Water use in a home with a grey water system

Climate Variability

 urban climate predictions (e.g. rainfall, evapotranspiration, temperatures and humidity) and the uncertainty associated with these predictions (100, 1000s of scenarios)

Hazard Assessment

- public health hazard and risk assessments of WSUD systems
- links to relevant national and state regulations and guidance on water recycling and pollution control
- guidance on how to implement and operate stormwater harvesting and use systems to meet the required health and safety standards for potable and nonpotable water use

Urban Form & Climate Data

Schematic diagram

CRC for Water Sensitive Cities

WSUD Conceptual Design

 UrbanBEATS explores and evaluates a range of decentralised water management configurations

Provide indicative conceptual designs for
sustainable urban water technologies for a
scenario (by determining where and how
these could be preferably implemented) to
meet required health and safety standards
for potable and non-potable water use

Treatment / Harvesting

- MUSIC (eWaterCRC, 2011) Beta version
 - runoff from pervious and impervious surfaces
 - pollutant generation (stochastic approach)
 - treatment and harvesting efficiency

Deep Loss

(USTM)

Daily deep seepage rate-dseep (%)

 translation factor -K (min) attenuation factor-θ

Bio-Physical Assessment

Treatment / Harvesting

Micro-Climate Impacts

Stream Health Outcomes

Economic Valuation

Contribution to Liveability

Simulation process

Where are we?

- Finalizing beta version
- Collaboration with colleagues from

University of Innsbruck

CRC for Water Sensitive Cities

Where are we?

Scenario Generation

Where are we?

Scenario Assessment

Future

• Outcomes from ongoing research

• other aspects of water sensitive stormwater management (e.g. local flood protection)

• different scales (e.g. micro-climate benefits at the street scale).

Questions

© CRC for Water Sensitive Cities 2012

