Modelling of E. coli distribution in coastal areas subjected to combined sewer overflows

De Marchis M., Freni G., Napoli E.
Introduction and aim of the study

Integrated models aim to joint analysis of two or more elements of the integrated urban drainage system.

Integrated models are often complex and this complexity increase if the Receiving Water Body is 2D or 3D (lakes, costal areas, etc.)
The study area: the Cyclops coast (Italy)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>58.9</td>
<td>24.5</td>
<td>34.4</td>
<td>6134</td>
<td>34.2%</td>
<td>12.2%</td>
</tr>
<tr>
<td>2</td>
<td>125.1</td>
<td>95.2</td>
<td>29.9</td>
<td>5867</td>
<td>38.1%</td>
<td>23.6%</td>
</tr>
<tr>
<td>3</td>
<td>108.6</td>
<td>81.9</td>
<td>26.7</td>
<td>4322</td>
<td>24.4%</td>
<td>7.2%</td>
</tr>
<tr>
<td>4</td>
<td>65.3</td>
<td>23.1</td>
<td>42.2</td>
<td>6543</td>
<td>19.6%</td>
<td>3.6%</td>
</tr>
<tr>
<td>5</td>
<td>97.4</td>
<td>60.1</td>
<td>37.3</td>
<td>5545</td>
<td>45.6%</td>
<td>21.3%</td>
</tr>
<tr>
<td>6</td>
<td>180.3</td>
<td>136.2</td>
<td>44.1</td>
<td>7143</td>
<td>65%</td>
<td>35%</td>
</tr>
</tbody>
</table>
The monitoring campaign

- 6 electromagnetic level gauge/velocity gauges (Δt: 1 min)
- Six 24 bottles automatic sampler (Δt: 15 min during rainfall events; 1 hour in dry times)
- One tipping bucket raingauge (Δt: 1 min)
- 5 off-shore sampling station (Δt: 1 hour)
- 5 current profiler in O
Rainfall – runoff transformation: Non linear reservoir (hydrologic losses: surface retention and infiltration)

Sewer and channel propagation: 1D DSV equations

Pollutants build-up and wash-off: Alley-Smith formulation

Pollutants propagation in sewers: Advection – dispersion eq. (no sedimentation is simulated in the sewer network and in rivers)
Reynolds Averaged Navier-Stokes equations for free-surface, constant density flows

\[
\frac{\partial \overline{u}_i}{\partial t} + \frac{\partial \overline{u}_i \overline{u}_j}{\partial x_j} - \nu \frac{\partial^2 \overline{u}_i}{\partial x_j \partial x_j} + \frac{1}{\rho} \frac{\partial \overline{q}}{\partial x_i} - \epsilon_{i j 3} f \overline{u}_j + g \frac{\partial \eta}{\partial x_i} + \frac{\partial \overline{u}_i \overline{u}_j'}{\partial x_j} = 0
\]

where \(q \) is the “dynamic” pressure, \(f \) the Coriolis parameter and \(\eta \) the water surface level

Continuity equation for incompressible flows

\[
\frac{\partial \overline{u}_j}{\partial x_j} = 0
\]

Kinematic condition for the water surface

\[
\frac{\partial \eta}{\partial t} + u_1 \frac{\partial (z_B + \eta)}{\partial x_1} + u_2 \frac{\partial (z_B + \eta)}{\partial x_2} - u_3 = 0
\]

where \(z_B \) is the bottom level
The numerical model solves, jointly with the system of conservation equations for momentum, the conservation equations for any pollutant present in the water body:

\[
\frac{\partial C}{\partial t} + \frac{\partial \left(Cu_i\right)}{\partial x_i} - \alpha \frac{\partial^2 C}{\partial x_i \partial x_i} + \frac{\partial \Lambda_j}{\partial x_j} - F_c = Q
\]

- C is the tracer concentration
- \(\alpha\) the molecular diffusivity
- \(\Lambda_j\) the turbulent diffusive flux modelled as

\[
\Lambda_j = - \Gamma \frac{\partial C}{\partial x_j}
\]

- \(\Gamma\) the turbulent diffusivity

\[
\frac{C}{C_0} = e^{-t/t_f}
\]

t_f e-folding time

A second-order accurate semi-implicit method is used for the time advancement of the solution (Crank-Nicolson implicit method for the vertical diffusive and turbulent terms, Adams-Bashfort explicit scheme for the remaining terms).

The pressure-velocity decoupling problem typical of incompressible fluids is overcome using a fractional-step method: at each time step RANS equations are solved assuming a hydrostatic pressure distribution without imposing mass conservation (predictor-step); a Poisson-like equation then is solved to obtain a conservative velocity field, to be added to the predictor-step field to obtain the divergence-free velocity field (corrector-step).

Parallelization is achieved using the Message Passing Interface (MPI) libraries.
The domain was discretized into:

- 64 cells in the E-W directions
- 128 cells in the N-S direction
- 16 cells in the vertical direction

Average cell dimension: 25 m
Available database and model calibration

<table>
<thead>
<tr>
<th>Event</th>
<th>Event 2</th>
<th>Event 3</th>
<th>Event 4</th>
<th>Dry Weather (3 days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25/04/04</td>
<td>12/05/04</td>
<td>12/07/04</td>
<td>17/07/04</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Event 1</th>
<th>Event 2</th>
<th>Event 3</th>
<th>Event 4</th>
<th>Dry Weather (3 days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rainfall duration [min]</td>
<td>140</td>
<td>158</td>
<td>850</td>
<td>112</td>
<td>-</td>
</tr>
<tr>
<td>Rainfall volume [mm]</td>
<td>15.4</td>
<td>21.8</td>
<td>16.2</td>
<td>52.8</td>
<td>-</td>
</tr>
<tr>
<td>Rainfall max. intensity [mm/h]</td>
<td>18.1</td>
<td>20.4</td>
<td>11.4</td>
<td>102.6</td>
<td>-</td>
</tr>
<tr>
<td>Rainfall av. intensity [mm/h]</td>
<td>6.6</td>
<td>8.1</td>
<td>1.1</td>
<td>28.3</td>
<td>-</td>
</tr>
<tr>
<td>ADWP [h]</td>
<td>47</td>
<td>180</td>
<td>553</td>
<td>88</td>
<td>-</td>
</tr>
<tr>
<td>Outfall 1 N° of water quality data points</td>
<td>24</td>
<td>24</td>
<td>15</td>
<td>24</td>
<td>72</td>
</tr>
<tr>
<td>Outfall 2 N° of water quality data points</td>
<td>20</td>
<td>23</td>
<td>14</td>
<td>24</td>
<td>72</td>
</tr>
<tr>
<td>Outfall 3 N° of water quality data points</td>
<td>19</td>
<td>24</td>
<td>16</td>
<td>23</td>
<td>72</td>
</tr>
<tr>
<td>Outfall 4 N° of water quality data points</td>
<td>24</td>
<td>24</td>
<td>17</td>
<td>21</td>
<td>72</td>
</tr>
<tr>
<td>Outfall 5 N° of water quality data points</td>
<td>24</td>
<td>24</td>
<td>20</td>
<td>18</td>
<td>72</td>
</tr>
<tr>
<td>Outfall 6 N° of water quality data points</td>
<td>20</td>
<td>24</td>
<td>19</td>
<td>22</td>
<td>72</td>
</tr>
<tr>
<td>RWB (offshore) No of water quality data points</td>
<td>6</td>
<td>8</td>
<td>4</td>
<td>3</td>
<td>24(*)</td>
</tr>
</tbody>
</table>
Available database and model calibration

Monitoring station O
Event 3 – 12 July 2004
Monitoring station D
Event 3 – 12 July 2004
RWB pollutants propagation

Just after the end of the rainfall event
04 July 2004
1 PM
RWB pollutants propagation

9h after the end of the rainfall event
04 July 2004
22 PM
Just after the end of the rainfall event
04 July 2004
1 PM
Three-dimensionality of the current

6h after the end of the rainfall event
04 July 2004
7 PM
Three-dimensionality of the current

Just after the end of the rainfall event
04 July 2004
1 PM
Three-dimensionality of the current

6h after the end of the rainfall event
04 July 2004
7 PM
Conclusions

• The application of a complex 3D model was necessary for the peculiar characteristics of the RWB being very deep and solicited by complex boundary conditions (mainly currents and wind on the free surface).

• Currents and wind have a relevant impact on the distribution of pollution concentrations in the costal area moving pollutants along the coast or off-shore

• Despite the Coliform mortality rate has been taken into account, the complex hydrodynamic and the boundary conditions played a more important role in the dispersion of the E. coli

• Despite the E. coli concentration is diluted along the coast during the rainfall event, the hydrodynamic circulation causes high concentrations in the open regions due to the floating of polluted river water over the salty seawater.
Modelling of E. coli distribution in coastal areas subjected to combined sewer overflows

De Marchis M., Freni G., Napoli E.
gabriele.freni@unikore.it

Thank you for attention!