

Using weather radar to optimise operation of an urban drainage system with distributed rainwater storage

Michael R. Rasmussen, Søren L. Thorndahl, Thomas R. Bentzen, Jesper E. Nielsen and Torben Selc

Distributed storage vs centralised storage

Rain harvest/Distributed storage (only runoff from roof)

- Water for household usage
- Potential for RTC
- Private commitment to sustainable
 water management

www.aau.dk

Michael R. Rasmussen – Dept. of Civil Engineering, Aalborg University, Denmark

Active system

The idea

Weather radar

We are using *simulations* to test concept,

 but all needed technologies and infrastructures are developed and ready for real test

www.aau.dk

Nowcast model: AAU nowcast

- EEC/Ericson C-band Doppler radar (DMI)
- o 2 x 2 km spatial resolution
- o 10 minute temporal resolution
- CO-Trec derived extrapolation model
- Runs in real time (10 minute update)
- o Continuous mean field bias corrected
- o 2 hours nowcast lead time
- One year of data used (2011)

Radar Observation

[mm/hr]

Case: Frejlev catchment, Denmark

Michael R. Rasmussen – Dept. of Civil Engineering, Aalborg University, Denmark

www.aau.dk

Distributed rainwater storage tank

Mathematical implemention into MOUSE model

Local storage model

AALBORG UNIVERSIT

$$\frac{dS}{dt} = i_{effective} - \frac{Q_{consumption}}{F_{roof}}$$

Precipitation modification model

$$i_{effective} = \begin{cases} \frac{\left((F_{Total} \cdot \varphi) - F_{Roof}\right)}{F_{Total} \cdot \varphi} \cdot i_{measured} & for \int_{0}^{t} i_{measured} dt < S_{max \ retention \ tank} \\ i_{measured} & for \int_{0}^{t} i_{measured} dt > S_{max \ retention \ tank} \end{cases}$$

Results: Statistics for waterlevel i manhole T011048

Results: Flow though research station

Results: Waterlevel in local storage tank (2011)

	Reference	Passive control	Active control (2 hour)
Total storm runoff (m ³)	212.594	193.915	194.134
Total CSO (m ³)	9.377	6.920	4.885
Number of CSO	14	13	8
CSO duration (hour)	4.	11.9	7.6

Perspectives

- Using more sophisticated control strategies could improve performance
- With NWP we could:
 - use more aggressive RTC strategy
 - increase available storage capacity
- Could be used as a sediment flushing system in dry weather situation (coordinated wave flushing)

Conclusion

- Even simple control strategies have a large impact
- Using weather radar based nowcast to control each local storage tank increases the effect of distributed storage from 25 % to 50 %
- **Some** of the expenses can be recouped in water savings and reduced building cost for increased flow and storage capacity

Using weather radar to optimise operation of an urban drainage system with distributed rainwater storage

Michael R. Rasmussen, Søren L. Thorndahl, Thomas R. Bentzen, Jesper E. Nielsen and Torben Selc

