Exploring Scenarios for Urban Water Systems Using a Socio-Technical Model

The Societal Transitions Module in DAnCE4Water

Dr. Fjalar J. de Haan^{1,2} Ms. Briony C. Ferguson¹ Prof. Ana Deletic² Prof. Rebekah R. Brown¹

Monash Water for Liveability, Monash University

¹School of Geography and Environmental Science, Faculty of Arts ²Department of Civil Engineering, Faculty of Engineering

DAnCE4Water

Dynamic Adaptation for enabling City Evolution for Water

Strategic Planning Tool

- Scenario assessment on the longer term and city scale
- Software and participatory scenario making
- Integrating biophysical, urban development and societal models

EU FP7 Project

- PREPARED: Enabling Change
- Austria-Australian Collaboration between
 Innsbruck University and Monash University

What is the STM supposed to do?

To simulate the societal evolution of urban water servicing solutions, represented by their relative influence – *power* – on the functioning of the entire urban water system.

Within DAnCE

To indicate to the other modules – notably the BPM – what technology society is most likely to implement at a certain time to meet a certain urban water need

As a standalone Societal Innovation Workbench

To explore the possible consequences of policy and strategic action under several scenarios

A Workbench for What?

Exploring the various pathways an urban water system could take under different scenarios

No explicit technology focus

• emphasis on 'ways of meeting societal needs'

Different water servicing solutions – different constellations

• constellations represented as sets of institutions and infrastructures

Constellations have power

• a measure of the likelihood a need is met by a solution of that constellation

Rigorous thought experimentation. What new power distributions *could* **result from strategic actions?**

Landscape

Sources of Tension

Societal Needs

Landscape Scenarios for and experiments with:

- Flood risk

Sources of Tension

Lack of Financial Resources

FACETS: Institutions | Infrastructures

- Facets represent ways a societal system meets societal needs, i.e. urban water servicing solutions
- Facets have **TWO PARTS**:
 - INSTITUTIONS knowledge and culture, norms and values, rules and regulations concerning urban water solutions
 - > **INFRASTRUCTURES** technologies and infrastructures involved in urban water solutions
- For both the *institutions* part as well as the *infrastructures* part a general list for all urban water systems is identified
- *Each combination* of an entry in the *institutions* list *with* one in the *infrastructures* list *is a facet* that could emerge under a certain scenario

Facets – Urban Water Solutions

Institutions Scientific research program / Industry-led R&D program for creating knowledge **Community learning** Cultural-Cognitive Legislative agenda for creating policy Stakeholder engagement platform Discourse and use of common language Capacity building programs for creating practice **Dissemination approaches** Science-industry collaboration for creating networks Public recognition of identity Promotion of ethical associations for spreading values Industry endorsement for creating sanctions on Normative Community endorsement Documentation for sharing norms Professional networks Goals and agendas for creating policy Vision articulation Mandate Ban for prescribing Limit implementation Regulative Target Provision Markets for mobilising resources Incentives

Strategies and plans

Infrastructures

Centralised Conveyance	1	0	Cen
Centralised Primary Treatment	2	0	ıtralis
Centralised Secondary Treatment	2	1	ed D
Centralised Tertiary Treatment	2	2	rain
Centralised Potable Harvest	2	3	age

Lineage Generation

Decentralised Conveyance	3	0	D
Decentralised Attenuation	3	1	ecen
Decentralised Multifunctional	3	2	tralis
Decentralised Primary Treatment	4	0	ed D
Decentralised Secondary Treatment	4	1	rain
Decentralised Tertiary Treatment	4	2	age

What goes in?

- An INITIAL COMPOSITION of the urban water system, the constellations in the system, the facets they are composed of and their values, representing the state at the beginning of the simulation
- SCENARIOS for the LANDSCAPE describing how outside influences on the urban water system change over the course of the intended simulation. They define the values (over simulation time) of NEEDS and SOURCES of Tension
 - Constraining influences are converted to sources of tension
 - Enabling influences lead to expression of societal needs
- **Policy EXPERIMENTS** introduced by the user either as
 - Different scenarios for the landscape, e.g. different scenarios for drought or floods
 - Introduction of a facets at certain times, e.g. to do the experiment whether a certain urban water solution 'takes off' if the knowledge networks and practice are already institutionalised

Societal Innovation

Conditions that drive societal innovation

- From outside the system – Tension
- From the needs expressed – Stress
- From competition within the system **Pressure**

Patterns of societal innovation

- Emergence of alternatives
 - Top-down
 - Bottom up
- Adaptation of present solutions
 - Within the regime

- Reconstellation
- Empowerment
- Adaptation

Six Possible Patterns

Emergence Patterns Adaptation Patterns

- Reconstellation under Tension Adaptation under Tension
 - Rec. / Emp. under Stress Adaptation under Stress
- Empowerment under Pressure Adaptation under Pressure

Initial conditions

water for liveability

After Empowerment under Stress

Consolidated Approach

- Interpret theory as causal and deterministic, take best approximation for certainty
- Each time, choose the most probable pattern, predict the most likely future

Exploratory Approach

- Interpret theory as causal, but probabilistic, assume no certain outcome
- Each time, consider all possible patterns, map out all possible futures
- This is not a statistical approach, no probabilities are assumed regarding the next patterns to emerge

🗟 Portfolio of Possible Futures	X
State at time = 0 Regime is Centralised Drainage	
- State at time = 1 Regime is Decentralised Drainage	
- State at time = 2 Regime is Centralised Drainage	
State at time = 3 Regime is Decentralised Drainage	
- State at time = 4 Regime is Centralised Drainage	
State at time = 5 Regime is Decentralised Drainage	
— State at time = 5 Regime is Centralised Drainage	
— State at time = 5 Regime is Decentralised Drainage	
State at time = 5 Regime is Centralised Drainage	
 State at time = 5 Regime is Decentralised Drainage 	
State at time = 5 Regime is Centralised Drainage	
State at time = 4 Regime is Decentralised Drainage	
State at time = 4 Regime is Centralised Drainage	
State at time = 4 Regime is Decentralised Drainage	
State at time = 3 Regime is Centralised Drainage	
State at time = 3 Regime is Decentralised Drainage	
State at time = 3 Regime is Centralised Drainage	
State at time = 3 Regime is Decentralised Drainage	
 State at time = 3 Regime is Centralised Drainage 	
 State at time = 2 Regime is Decentralised Drainage 	
State at time = 2 Regime is Centralised Drainage	
State at time = 2 Regime is Decentralised Drainage	
• State at time = 1 Regime is Centralised Drainage	
• State at time = 1 Regime is Decentralised Drainage	
• State at time = 1 Regime is Centralised Drainage	
• State at time = 1 Regime is Decentralised Drainage	
State at time = 1 Regime is Centralised Drainage	
State at time = 2 Regime is Decentralised Drainage	
State at time = 2 Regime is Centralised Drainage	
State at time = 2 Regime is Centralised Drainage	
• State at time = 2 Régime is Centralised Drainage	
State at time = 3 Régime is Centralised Drainage	
State at time = 3 Kegime is Centralised Drainage	
State at time = 3 regime is Centralised Drainage	
State at time = 3 Regime is Centralised Drainage	
Y Olde at unite – 5 [regime is Cerualised Drainage	
Volate at unite – 4 reginine is Decleniualised Dialifage	-

After 5 time steps: ~7500 Possible Futures

Many, many possible futures...

• Six possible patterns per time step, six times six, times six, etc.

Many similar futures

• Statistics on portfolio of futures reveals 'typical' futures

Interpretation and approach

- Many different futures of a limited number of types
- Most often eventuating type chosen as most likely future within DAnCE4Water simulation cycle

Future Work

Testing against theory and case studies

- Reproducing theoretically identified transition pathways
- Historical development of Scotchman's Creek stormwater system (Melbourne, Australia)
- Melbourne urban water servicing

Further development

- As a user-friendly tool for industry
- As part of participatory approaches to scenario making and strategic planning

Thank You