Urban drainage uncertainty analysis: should we break our back for normally distributed residuals?

Cintia. B. S. Dotto
Ana Deletic
David T. McCarthy
Model calibration, sensitivity & uncertainty analysis

- Bayes’ theorem

\[p(\theta | d) = \frac{p(d | \theta) p(\theta)}{p(d)} \]

- Model parameters \(\theta \)
- Measured calibration data \(d \)
- \(p(\theta/d) \) posterior distribution of \(\theta \) for given \(d \)
- \(P(\theta) \) prior distribution of \(\theta \) before constraining \(\theta \) through calibration
- \(p(d | \theta) \) likelihood function (probability of observing \(d \) for given \(\theta \))
- \(p(d) \) distribution of observations
Model calibration, sensitivity & uncertainty analysis

Likelihood function

\[
p(d | \theta) = \frac{\prod w_i \exp \left(- \frac{1}{2} \sum (d - M(\theta)_i, w_i)^2 \right)}{(2\pi)^{n/2}}
\]

[Diagram showing likelihood and residuals]
Residuals

Not checked
N(0,\sigma)
Residuals

data transformation
Residuals

change implied information (structure) of the observations

model sensitivity

data transformation
Aim

- impacts of verifying the normality assumption on the model sensitivity and associated parameter uncertainty
Models & Data

MUSIC
- conceptual lumped models
- continuous simulation
- series of reservoirs
- flows impervious & pervious area
- 13 par

KAREN
- simple linear reservoir
- flows impervious area
- 4 par

- 2 years rainfall & flow 6 min – urban catchment Melbourne (TIF 70%)
Scenarios

<table>
<thead>
<tr>
<th>Scenarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unverified normality of the residuals was checked but not verified</td>
</tr>
<tr>
<td>Verified normality assumption was verified and a weighting strategy that gives more importance to high flows in the likelihood function was applied</td>
</tr>
<tr>
<td>Verified normality assumption was verified, but no weights were applied to the data</td>
</tr>
</tbody>
</table>
Scenarios

<table>
<thead>
<tr>
<th>Scenarios</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not normal</td>
<td>Normality of the residuals was checked but not verified</td>
</tr>
<tr>
<td>Unverified</td>
<td>Normality assumption was verified and a weighting strategy was applied</td>
</tr>
<tr>
<td>Verified</td>
<td>Normality assumption was verified, but no weights were applied</td>
</tr>
</tbody>
</table>
Scenarios

<table>
<thead>
<tr>
<th>Scenarios</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unverified</td>
<td>Normality of the residuals was checked but not verified.</td>
</tr>
<tr>
<td>Verified1</td>
<td>Normality assumption was verified and a weighting strategy was applied.</td>
</tr>
<tr>
<td>Verified2</td>
<td>Normality assumption was verified, but no weights were applied to the data.</td>
</tr>
</tbody>
</table>

Box-Cox transformation

$$Q^* = \frac{(Q + \lambda_2)^{\lambda_1} - 1}{\lambda_1}$$

Normal Probability Plot

Residual Probability vs. Normal Probability

- **w = 1**
- **w = 0.003 to 0.0059 m3/s**
- **w = 0.006 to 0.0099 m3/s**
- **w = 0.01 to 0.049 m3/s**
- **w = 0.05 to 0.19 m3/s**
- **w = 0.2 to 2.6 m3/s**
Scenarios

<table>
<thead>
<tr>
<th>Scenarios</th>
<th>$w = 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unverified</td>
<td>normality of the residuals was checked but not verified</td>
</tr>
<tr>
<td>Verified1</td>
<td>normality assumption was verified and a weighting strategy that gives more importance to high flows in the likelihood function was applied</td>
</tr>
<tr>
<td>Verified2</td>
<td>normality assumption was verified, but no weights were applied to the data</td>
</tr>
</tbody>
</table>

Box-Cox transformation

$$Q^* = \frac{(Q + \lambda_2)^{\lambda_1} - 1}{\lambda_1}$$

Normal & no weights ($w=1$)

- 1 0.003 to 0.0059 m3/s
- 2 0.006 to 0.0099 m3/s
- 3 0.01 to 0.049 m3/s
- 4 0.05 to 0.19 m3/s
- 5 0.2 to 2.6 m3/s
Scenarios

<table>
<thead>
<tr>
<th>Scenarios</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not normal</td>
<td></td>
</tr>
<tr>
<td>Unverified</td>
<td>Normality of the residuals was checked but not verified</td>
</tr>
<tr>
<td>Normal & (w = \text{relat} u)</td>
<td></td>
</tr>
<tr>
<td>Verified1</td>
<td>Normality assumption was verified and a weighting strategy that gives more importance to high flows in the likelihood function was applied</td>
</tr>
<tr>
<td>Normal & no weights ((w=1))</td>
<td></td>
</tr>
<tr>
<td>Verified2</td>
<td>Normality assumption was verified, but no weights were applied to the data</td>
</tr>
</tbody>
</table>
Results

Analysis of results

• Model efficiency
• Model sensitivity
• Prediction parameter uncertainty
Results

Model efficiency (E)

<table>
<thead>
<tr>
<th></th>
<th>MUSIC</th>
<th>KAREN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unverified</td>
<td>0.81</td>
<td>0.80</td>
</tr>
<tr>
<td>Verified1</td>
<td>0.54</td>
<td>0.58</td>
</tr>
<tr>
<td>Verified2</td>
<td>0.48</td>
<td>0.46</td>
</tr>
</tbody>
</table>

Modelled flow (m3/s)

<table>
<thead>
<tr>
<th></th>
<th>MUSIC</th>
<th>KAREN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unverified</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verified1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verified2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Estimated flow (m3/s)

<table>
<thead>
<tr>
<th></th>
<th>MUSIC</th>
<th>KAREN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unverified</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verified1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verified2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Measured flow (m3/s)

<table>
<thead>
<tr>
<th></th>
<th>MUSIC</th>
<th>KAREN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unverified</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verified1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verified2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Results

Model efficiency (E)

<table>
<thead>
<tr>
<th>Model</th>
<th>MUSIC</th>
<th>KAREN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unverified</td>
<td>0.81</td>
<td>0.80</td>
</tr>
<tr>
<td>Verified1</td>
<td>0.54</td>
<td>0.58</td>
</tr>
<tr>
<td>Verified2</td>
<td>0.48</td>
<td>0.46</td>
</tr>
</tbody>
</table>
Results

Residuals – unverified

<table>
<thead>
<tr>
<th>MUSIC</th>
<th>KAREN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© CRC for Water Sensitive Cities 2012
Results

Residuals – verified

![Graphs showing mean transformed residuals against probability for MUSIC and KAREN models.](image)
Results

MUSIC

- EIF (%)
- Percentage of accepted values (%)
- SMax (mm)
- fc (mm)
- coeff

KAREN

- TOC (min)
- li (mm)
- ev (mm/day)
- gw (mm)
- dseep (x100%)
- K (min)
- 
Results

MUSIC

KAREN

n. observations within the parameter uncertainty bound (%)

other significant sources of uncertainties

Parameter uncertainty

CRC for Water Sensitive Cities

MONASH University
Results

Coverage from parameter uncertainties

<table>
<thead>
<tr>
<th>Parameters</th>
<th>MUSIC</th>
<th>KAREN</th>
</tr>
</thead>
<tbody>
<tr>
<td>EIF (%)</td>
<td>32</td>
<td>45</td>
</tr>
<tr>
<td>Unverified</td>
<td>55</td>
<td>9</td>
</tr>
<tr>
<td>Verified1</td>
<td>61</td>
<td>5</td>
</tr>
<tr>
<td>Verified2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Observations within the parameter uncertainty bound (%)

- **MUSIC**
 - Unverified: 32%
 - Verified1: 55%
 - Verified2: 61%

- **KAREN**
 - Unverified: 45%
 - Verified1: 9%
 - Verified2: 5%
Conclusions

unverified verified1 verified2

black-box models

better calibrate models -
better predictions outside the calibration period

Info role param - model structure
Questions
Results

MUSIC

KAREN

CRC for Water Sensitive Cities

MONASH University

Results

Rainfall intensity
Total predictive uncertainty
Measured flow
Modelled flow

Rainfall intensity
Total predictive uncertainty
Measured flow
Modelled flow

Metrics

- Rainfall intensity
- Total predictive uncertainty
- Measured flow
- Modelled flow

Verified

Unverified

Percentage of accepted values (%)

Flows [m^3/s]

Rainfall intensity [mm/6min]

K (min)

dseep (x100%)

g(w mm)

EIF (%)

SMax (mm)

fc (mm)

Coeff