Tuning of a central controller for a sewer network using multiple simplified models

R.R.P. van Nooijen1 A.G. Kolechkina2 E. van Velzen3 P.E.R.M. van Leeuwen4

1Delft University of Technology, Delft, the Netherlands
2Aronwis, Den Hoorn, the Netherlands
3Waterschap Hollandse Delta, Ridderkerk, the Netherlands
4Deltares, Delft, the Netherlands

9th International Conference on Urban Drainage Modelling, Belgrade 2012
1 Context
 - Geography and System Properties
 - Goal

2 Preliminary experiments
 - Setup
 - Results
1 Context
 • Geography and System Properties
 • Goal

2 Preliminary experiments
 • Setup
 • Results
van Nooijen, Kolechkina, van Velzen, van Leeuwen

Tuning of a controller for a sewer network
Tuning of a controller for a sewer network
Village sewer systems

- Pumping station 1
- Pumping station 2
- Pumping station 3
- P. s. 4
- Town hall
- Water board
- CSO location
- Open water
- WWTP
Village sewer system properties

- In one system mixture of
 - combined (sanitary and storm in same pipe)
 - separated (sanitary separate from storm)
 - improved separated (sanitary catches “first flush”)

- Transport
 - gravity (short distances)
 - pumps (limit on capacity)
 - pressurized pipe lines

- In case of heavy rain
 - Combined sewer overflows (CSO)
 - Settling tank in series with CSO
Village sewer system properties

- In one system mixture of
 - combined (sanitary and storm in same pipe)
 - separated (sanitary separate from storm)
 - improved separated (sanitary catches “first flush”)

- Transport
 - gravity (short distances)
 - pumps (limit on capacity)
 - pressurized pipe lines

- In case of heavy rain
 - Combined sewer overflows (CSO)
 - Settling tank in series with CSO
Village sewer system properties

- In one system mixture of
 - combined (sanitary and storm in same pipe)
 - separated (sanitary separate from storm)
 - improved separated (sanitary catches “first flush”)

- Transport
 - gravity (short distances)
 - pumps (limit on capacity)
 - pressurized pipe lines

- In case of heavy rain
 - Combined sewer overflows (CSO)
 - Settling tank in series with CSO
Diagram of system used in experiments

- **Overflow Structure with settling tank (143 m³)**
- **Overflow structure**
- **Pumping station**
- **Free flow sewer pipe**

Molendijk
- CRKW-001: 2.4 ha (CSS), 302 m³ storage, 7.6 m³/h dwf

Kern
- CRKW-002: 17.6 ha (CSS), 1702 m³ total storage, 36 m³/h dwf
- 135 m³/h
- 13.7 m³/h

Rijksstraatweg
- CRKW-004: 2.2 ha (CSS), 274 m³ storage, 9.1 m³/h dwf
- 115 m³/h

Bongerd
- CRKW-008: 2.6 ha (Improved Separated), 101 m³ storage, 5.3 m³/h dwf
- 85 m³/h

Industrieterrein
- CRKW-003: 3.1 ha (CSS), 219 m³ storage, 1.6 m³/h dwf
- 230 m³/h

To WWTP
1 Context
 - Geography and System Properties
 - Goal

2 Preliminary experiments
 - Setup
 - Results
How to avoid CSO events

- Bigger pumps
 - Costly
 - Eventually means bigger treatment plant
- More storage
 - Costly
 - Must be emptied between events
- Better use of existing storage (Central/Global Control)
 - Can compensate for imbalances due to village expansion
 - Cheaper than alternatives
How to avoid CSO events

- Bigger pumps
 - Costly
 - Eventually means bigger treatment plant

- More storage
 - Costly
 - Must be emptied between events

- Better use of existing storage (Central/Global Control)
 - Can compensate for imbalances due to village expansion
 - Cheaper than alternatives
How to avoid CSO events

- Bigger pumps
 - Costly
 - Eventually means bigger treatment plant

- More storage
 - Costly
 - Must be emptied between events

- Better use of existing storage (Central/Global Control)
 - Can compensate for imbalances due to village expansion
 - Cheaper than alternatives
Can compensate for imbalances due to village expansion

- Need to know dynamic effects of
 - imbalances
 - control

Design influenced by dynamic effects
- Either: large scale long term measurements
- Or: detailed and calibrated computer simulation

Detailed and calibrated computer simulation
- Either: for limited number design storms
- Or: large number of simulations (say 25 years worth of interesting events)
Central Automatic Control

- Can compensate for imbalances due to village expansion
 - Need to know dynamic effects of
 - imbalances
 - control
- Design influenced by dynamic effects
 - Either: large scale long term measurements
 - Or: detailed and calibrated computer simulation
- Detailed and calibrated computer simulation
 - Either: for limited number design storms
 - Or: large number of simulations (say 25 years worth of interesting events)
Central Automatic Control

- Can compensate for imbalances due to village expansion
 - Need to know dynamic effects of
 - imbalances
 - control

- Design influenced by dynamic effects
 - Either: large scale long term measurements
 - Or: detailed and calibrated computer simulation

- Detailed and calibrated computer simulation
 - Either: for limited number design storms
 - Or: large number of simulations (say 25 years worth of interesting events)
Exploring Controller Parameter Space

- One parameter per subcatchment, five subcatchments, hundreds of events = probably many runs needed
- Full hydrodynamical simulation
 - Expensive
 - time
 - data storage
- One simple model for all events
 - Cheap
 - Inaccurate
- One simple model per event (sub-event?)
 - Cheap
 - Moderately accurate?
 - Cost of model tuning?

van Nooijen, Kolechkina, van Velzen, van Leeuwen
Tuning of a controller for a sewer network
Exploring Controller Parameter Space

- One parameter per subcatchment, five subcatchments, hundreds of events = probably many runs needed
- Full hydrodynamical simulation
 - Expensive
 - time
 - data storage
- One simple model for all events
 - Cheap
 - Inaccurate
- One simple model per event (sub-event?)
 - Cheap
 - Moderately accurate?
 - Cost of model tuning?
Exploring Controller Parameter Space

- One parameter per subcatchment, five subcatchments, hundreds of events = probably many runs needed
- Full hydrodynamical simulation
 - Expensive
 - time
 - data storage
- One simple model for all events
 - Cheap
 - Inaccurate
- One simple model per event (sub-event?)
 - Cheap
 - Moderately accurate?
 - Cost of model tuning?
Exploring Controller Parameter Space

- One parameter per subcatchment, five subcatchments, hundreds of events = probably many runs needed
- Full hydrodynamical simulation
 - Expensive
 - time
 - data storage
- One simple model for all events
 - Cheap
 - Inaccurate
- One simple model per event (sub-event?)
 - Cheap
 - Moderately accurate?
 - Cost of model tuning?

van Nooijen, Kolechkina, van Velzen, van Leeuwen

Tuning of a controller for a sewer network
1 Context
 • Geography and System Properties
 • Goal

2 Preliminary experiments
 • Setup
 • Results
Software used

- Full hydrodynamical simulation
 - Sobek (Deltares)
 - linked to controller through OpenMI 1.4

- Controller
 - written in Java/Scala at Delft University

- Simple model
 - Matlab
 - linked to controller through Java call interface

- Tests
 - Matlab
 - Has access to Sobek data through custom code
Software used

- **Full hydrodynamical simulation**
 - Sobek (Deltares)
 - linked to controller through OpenMI 1.4

- **Controller**
 - written in Java/Scala at Delft University

- **Simple model**
 - Matlab
 - linked to controller through Java call interface

- **Tests**
 - Matlab
 - Has access to Sobek data through custom code
Software used

- Full hydrodynamical simulation
 - Sobek (Deltares)
 - linked to controller through OpenMI 1.4
- Controller
 - written in Java/Scala at Delft University
- Simple model
 - Matlab
 - linked to controller through Java call interface
- Tests
 - Matlab
 - Has access to Sobek data through custom code
Software used

- Full hydrodynamical simulation
 - Sobek (Deltares)
 - linked to controller through OpenMI 1.4
- Controller
 - written in Java/Scala at Delft University
- Simple model
 - Matlab
 - linked to controller through Java call interface
- Tests
 - Matlab
 - Has access to Sobek data through custom code
Simple model

- Subcatchment is 0D reservoir, calibration parameter
 - volume
- Pump: on or off, capacity as in Sobek
- CSO: linear, calibration parameter
 - proportionality constant
 - threshold is equal to subcatchment volume
Simple model

- Subcatchment is 0D reservoir, calibration parameter
 - volume
- Pump: on or off, capacity as in Sobek
- CSO: linear, calibration parameter
 - proportionality constant
 - threshold is equal to subcatchment volume
Simple model

- Subcatchment is 0D reservoir, calibration parameter
 - volume
- Pump: on or off, capacity as in Sobek
- CSO: linear, calibration parameter
 - proportionality constant
 - threshold is equal to subcatchment volume
Controllers

- **Local**
 - On/off with hysteresis
 - on at h_1
 - off at $h_0 < h_1$

- **Central**
 - Prescribed storage use (local derived from total)
 - pumps used to track storage curve
 - storage curve (local vs global) given per subcatchment
Procedure

- **Calibration**
 - precipitation inflow from Sobek
 - local controller
 - simple model state as input
 - CSO compared to
 - Sobek under local control

- **Validation**
 - precipitation inflow from Sobek
 - central controller
 - simple model state as input
 - CSO compared to
 - Sobek under central control
1 Context
 • Geography and System Properties
 • Goal

2 Preliminary experiments
 • Setup
 • Results
Results in words

- Time gain 93%, not representative because
 - Matlab code not optimal
 - Coupling between Sobek and central controller not optimal
 - ...

- Accuracy
 - More runs needed for definite answers
 - Variable delay parameter between actual volume and volume in CSO formula may be needed
 - Missing gravity flow connection in model limits calibration to three subcatchments
Best case results in graphs

Local

Central

event 21, $V_{kern} = 1682$, $c_{spill} = 0.001$

event 118, $V_{kern} = 1750$, $c_{spill} = 0.001$
Results in table

<table>
<thead>
<tr>
<th>Event</th>
<th>Sobek Local m³</th>
<th>Sobek Central m³</th>
<th>Simplified Local m³</th>
<th>Simplified Central m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>869</td>
<td>735</td>
<td>871</td>
<td>516</td>
</tr>
<tr>
<td>88</td>
<td>1312</td>
<td>1250</td>
<td>1356</td>
<td>1138</td>
</tr>
<tr>
<td>118</td>
<td>728</td>
<td>687</td>
<td>733</td>
<td>679</td>
</tr>
<tr>
<td>189</td>
<td>6688</td>
<td>6649</td>
<td>6715</td>
<td>6668</td>
</tr>
<tr>
<td>14</td>
<td>1447</td>
<td>1411</td>
<td>1450</td>
<td>1415</td>
</tr>
</tbody>
</table>

Total spills (189: one extreme peak)
Problem: delays

Fast versus slow filling

8mm/hour peak

5mm/hour peak

van Nooijen, Kolechkina, van Velzen, van Leeuwen

Tuning of a controller for a sewer network
Volume versus shape

![Graph showing discharge (m^3/s) over time (h) for RGD_CRKW-002 Kern. The graph compares model and sobek results.](image)
Summary

- Simple model per event better than just one simple model
- Simple model is faster
- But more work is needed on
 - Simple model calibration
 - Simple model characteristics
 - Delays when spill location is far from pump
Thank you for your attention