Tuning of a central controller for a sewer network using multiple simplified models

R.R.P. van Nooijen¹ A.G. Kolechkina² E. van Velzen³ P.E.R.M. van Leeuwen⁴

¹Delft University of Technology, Delft, the Netherlands

²Aronwis, Den Hoorn, the Netherlands

³Waterschap Hollandse Delta, Ridderkerk, the Netherlands

⁴Deltares, Delft, the Netherlands

9th International Conference on Urban Drainage Modelling, Belgrade 2012

Outline

- Geography and System Properties
- Goal

- Setup
- Results

Basic Problem

Outline

• Geography and System Properties

Goal

2 Preliminary experiments

- Setup
- Results

• • • • • • • •

고 노

Basic Problem Goal

Location

< □ > < □ > < □ > < □ > < □ > < □ >

三日 のへの

Basic Problem

Island in Rhine/Meuse Delta

After Ernst (1969), Fig. 2.

van Nooijen, Kolechkina, van Velzen, van Leeuwen

< ∃ >

--

Village sewer systems

Basic Problem Goal

Village sewer system properties

• In one system mixture of

- combined (sanitary and storm in same pipe)
- separated (sanitary separate from storm)
- improved separated (sanitary catches "first flush")

• Transport

- gravity (short distances)
- pumps (limit on capacity)
- pressurized pipe lines
- In case of heavy rain
 - Combined sewer overflows (CSO)
 - Settling tank in series with CSO

伺下 イヨト イヨト

Basic Problem Goal

Village sewer system properties

• In one system mixture of

- combined (sanitary and storm in same pipe)
- separated (sanitary separate from storm)
- improved separated (sanitary catches "first flush")
- Transport
 - gravity (short distances)
 - pumps (limit on capacity)
 - pressurized pipe lines
- In case of heavy rain
 - Combined sewer overflows (CSO)
 - Settling tank in series with CSO

Basic Problem Goal

Village sewer system properties

• In one system mixture of

- combined (sanitary and storm in same pipe)
- separated (sanitary separate from storm)
- improved separated (sanitary catches "first flush")
- Transport
 - gravity (short distances)
 - pumps (limit on capacity)
 - pressurized pipe lines
- In case of heavy rain
 - Combined sewer overflows (CSO)
 - Settling tank in series with CSO

Diagram of system used in experiments

(ロ) (日) (日) (日) (日) (日) (日)

Goal

Outline

• Geography and System Properties

Goal

- Setup
- Results

• • = • • = •

315

Basic Problem Goal

How to avoid CSO events

Bigger pumps

- Costly
- Eventually means bigger treatment plant
- More storage
 - Costly
 - Must be emptied between events
- Better use of existing storage (Central/Global Control)
 - Can compensate for imbalances due to village expansion

・ 同 ト ・ ヨ ト ・ ヨ ト

• Cheaper than alternatives

Basic Problem Goal

How to avoid CSO events

Bigger pumps

- Costly
- Eventually means bigger treatment plant
- More storage
 - Costly
 - Must be emptied between events
- Better use of existing storage (Central/Global Control)
 - Can compensate for imbalances due to village expansion

• Cheaper than alternatives

Basic Problem Goal

How to avoid CSO events

Bigger pumps

- Costly
- Eventually means bigger treatment plant
- More storage
 - Costly
 - Must be emptied between events
- Better use of existing storage (Central/Global Control)
 - Can compensate for imbalances due to village expansion
 - Cheaper than alternatives

Central Automatic Control

- Can compensate for imbalances due to village expansion
 - Need to know dynamic effects of
 - imbalances
 - control
- Design influenced by dynamic effects
 - Either: large scale long term measurements
 - Or: detailed and calibrated computer simulation
- Detailed and calibrated computer simulation
 - Either: for limited number design storms
 - Or: large number of simulations (say 25 years worth of interesting events)

・ 同 ト ・ ヨ ト ・ ヨ ト

Central Automatic Control

- Can compensate for imbalances due to village expansion
 - Need to know dynamic effects of
 - imbalances
 - control
- Design influenced by dynamic effects
 - Either: large scale long term measurements
 - Or: detailed and calibrated computer simulation
- Detailed and calibrated computer simulation
 - Either: for limited number design storms
 - Or: large number of simulations (say 25 years worth of interesting events)

通り イヨト イヨト

Central Automatic Control

- Can compensate for imbalances due to village expansion
 - Need to know dynamic effects of
 - imbalances
 - control
- Design influenced by dynamic effects
 - Either: large scale long term measurements
 - Or: detailed and calibrated computer simulation
- Detailed and calibrated computer simulation
 - Either: for limited number design storms
 - Or: large number of simulations (say 25 years worth of interesting events)

Basic Problen Goal

Exploring Controller Parameter Space

- One parameter per subcatchment, five subcatchments, hundreds of events = probably many runs needed
- Full hydrodynamical simulation
 - Expensive
 - time
 - data storage
- One simple model for all events
 - Cheap
 - Inaccurate
- One simple model per event (sub-event?)
 - Cheap
 - Moderately accurate?
 - Cost of model tuning?

・ロト ・ 同ト ・ ヨト ・ ヨト

Basic Problen Goal

Exploring Controller Parameter Space

- One parameter per subcatchment, five subcatchments, hundreds of events = probably many runs needed
- Full hydrodynamical simulation
 - Expensive
 - time
 - data storage
- One simple model for all events
 - Cheap
 - Inaccurate
- One simple model per event (sub-event?)
 - Cheap
 - Moderately accurate?
 - Cost of model tuning?

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Basic Problen Goal

Exploring Controller Parameter Space

- One parameter per subcatchment, five subcatchments, hundreds of events = probably many runs needed
- Full hydrodynamical simulation
 - Expensive
 - time
 - data storage
- One simple model for all events
 - Cheap
 - Inaccurate
- One simple model per event (sub-event?)
 - Cheap
 - Moderately accurate?
 - Cost of model tuning?

Exploring Controller Parameter Space

- One parameter per subcatchment, five subcatchments, hundreds of events = probably many runs needed
- Full hydrodynamical simulation
 - Expensive
 - time
 - data storage
- One simple model for all events
 - Cheap
 - Inaccurate
- One simple model per event (sub-event?)
 - Cheap
 - Moderately accurate?
 - Cost of model tuning?

Setup Results

Outline

- Geography and System Properties
- Goal

Image: A image: A

고 노

Setup Results

Software used

• Full hydrodynamical simulation

- Sobek (Deltares)
- linked to controller through OpenMI 1.4

Controller

- written in Java/Scala at Delft University
- Simple model
 - Matlab
 - linked to controller through Java call interface
- Tests
 - Matlab
 - Has access to Sobek data through custom code

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Setup Results

Software used

- Full hydrodynamical simulation
 - Sobek (Deltares)
 - linked to controller through OpenMI 1.4
- Controller
 - written in Java/Scala at Delft University
- Simple model
 - Matlab
 - linked to controller through Java call interface
- Tests
 - Matlab
 - Has access to Sobek data through custom code

4 冊 ト 4 三 ト 4 三 ト

Setup Results

Software used

- Full hydrodynamical simulation
 - Sobek (Deltares)
 - linked to controller through OpenMI 1.4
- Controller
 - written in Java/Scala at Delft University
- Simple model
 - Matlab
 - linked to controller through Java call interface
- Tests
 - Matlab
 - Has access to Sobek data through custom code

3 🕨 🖌 3

Setup Results

Software used

- Full hydrodynamical simulation
 - Sobek (Deltares)
 - linked to controller through OpenMI 1.4
- Controller
 - written in Java/Scala at Delft University
- Simple model
 - Matlab
 - linked to controller through Java call interface
- Tests
 - Matlab
 - Has access to Sobek data through custom code

Simple model

• Subcatchment is 0D reservoir, calibration parameter

volume

- Pump: on or off, capacity as in Sobek
- CSO: linear, calibration parameter
 - proportionality constant
 - threshold is equal to subcatchment volume

• • • • • • •

Simple model

- Subcatchment is 0D reservoir, calibration parameter
 - volume
- Pump: on or off, capacity as in Sobek
- CSO: linear, calibration parameter
 - proportionality constant
 - threshold is equal to subcatchment volume

• • • • • • •

Simple model

- Subcatchment is 0D reservoir, calibration parameter
 - volume
- Pump: on or off, capacity as in Sobek
- CSO: linear, calibration parameter
 - proportionality constant
 - threshold is equal to subcatchment volume

Setup Results

Controllers

- Local
 - On/off with hysteresis
 - on at h_1
 - off at $h_0 < h_1$
- Central
 - Prescribed storage use (local derived from total)
 - pumps used to track storage curve
 - storage curve (local vs global) given per subcatchment

Setup Results

Procedure

- Calibration
 - precipitation inflow from Sobek
 - local controller
 - simple model state as input
 - CSO compared to
 - Sobek under local control
- Validation
 - precipitaton inflow from Sobek
 - central controller
 - simple model state as input
 - CSO compared to
 - Sobek under central control

∃ ► < ∃ ►</p>

Setup Results

Outline

- Geography and System Properties
- Goal

∃ → < ∃</p>

고 노

Results in words

• Time gain 93%, not representative because

- Matlab code not optimal
- Coupling between Sobek and central controller not optimal
- ...
- Accuracy
 - More runs needed for definite answers
 - Variable delay parameter between actual volume and volume in CSO formula may be needed
 - Missing gravity flow connection in model limits calibration to three subcatchments

• • = • • = •

Best case results in graphs

Setup Results

Results in table

Event	Sobek		Simplified	
	Local	Central	Local	Central
	m ³	m ³	m ³	m ³
2	869	735	871	516
88	1312	1250	1356	1138
118	728	687	733	679
189	6688	6649	6715	6668
14	1447	1411	1450	1415
T . I	11 (100		1.)	

Total spills (189: one extreme peak)

・ 同 ト ・ ヨ ト ・ ヨ ト

三日 のへの

• • = • • = •

< A

ELE DQA

Volume versus shape

◆□▶ ◆舂▶ ◆吾▶ ◆吾▶ 吾国 のへで

- Simple model per event better than just one simple model
- Simple model is faster
- But more work is needed on
 - Simple model calibration
 - Simple model characteristics
 - Delays when spill location is far from pump

Thank you for your attention I

van Nooijen, Kolechkina, van Velzen, van Leeuwen Tuning of a controller for a sewer network

고 노