

Methodology for qualitative urban flooding risk assessment

João P Leitão, Maria do Céu Almeida, Nuno E Simões and André Martins

9th International Conference on Urban Drainage Modelling Belgrade 2012

Urban pluvial flooding

Caused by intense rainfallLimited capacity of the drainage systems

Urban pluvial flooding

Why is urban flood (surface) modelling important?

- >Floods have been occurring all over the world... and more often
- >The majority of the population (and activities) is concentrated in urban areas and tends to increase
- > Infrastructures are mainly located in urban areas

Need for URBAN FLOODING RISK assessment!

Contents

>Methodology for pluvial flooding risk assessment

- Urban flood modelling
- Risk assessment
- >Case study
- >Results and discussion
- >Conclusions

Methodology: urban flood modelling

- >Dual-drainage concept
- >1D/1D or 1D/2D modelling
- >Urban drainage modelling results used to estimate consequences

- >The risk assessment methodology comprises 3 steps and is applied to each rainfall event
 - Likelihood estimation (based on rainfall probability)
 - Consequence estimation (for each flood prone area)
 - Risk estimation (for each flood prone area)

R=f(P,C)

Likelihood estimation method

> Definition of 5 <u>likelihood classes</u>

>Probability calculated using the Poisson distribution

Likelihood classes		Probability range (%)
1	Insignificant	[0; 0.2[
2	Low	[0.2; 1[
3	Moderate	[1; 2[
4	High	[2, 10[
5	Severe	[10; 100[

Consequence estimation method

- >An event can affect different stakeholders (consequence dimensions)
- > Different consequence dimensions
 - Impacts on health and safety
 - Impacts on other infrastructures (roads, buildings, transports, ...)
 - Impacts on the environment
 - ...
- It is difficult (if not impossible) to represent all consequence dimensions in financial terms

Consequences estimation method

>The classes are <u>equivalent</u> for the considered consequence dimensions

	Consequence dimensions			
Consequence classes	Effect on public Number of affected buildings		Pedestrian safety (<i>HR*</i>)	
1 Insignificant	No routes affected	0	[0; 0.125[
2 Low	1 route affected	1-10	[0.125; 0.75[
3 Moderate	2-3 routes affected	10-100	[0.75; 1.25[
4 High	3-5 routes affected	100-1,000	[1.25; 2.5[
5 Severe <i>*HR</i> - Hazard rating (V	> 5 routes affected Vallingford <i>et al.</i> , 2006)	> 1,000	[2.5; +∞[

Risk estimation method: risk matrix

R=f(P,C)

		Consequence				
		1	2	3	4	5
Likelihood	5	Low	Medium	High	High	High
	4	Low	Medium	Medium	High	High
	3	Low	Low	Medium	Medium	High
	2	Low	Low	Low	Medium	Medium
	1	Low	Low	Low	Low	Low

>Lisbon, Portugal

- Area: 1 km²
- Elevation range: 0-135 m
- Two distinct areas • Not urbanised (and steep) • Highly urbanised (almost flat)

- >1D overland flow network generated using the methodology presented by Maksimovic *et al.* (2009)
 - Flood prone areas
 - Overland flow paths
 - DEM based

>1D/1D model

- Overland network
- Sewer network

>Rainfall events

- Storm A 23h00, 17th Feb 2008 to 12h00, 18th Feb 2008
- Storm B 15h00, 7th April 2008 to 21h00, 7th April 2008

Rainfall events	Total duration (min.)	Max. intensity 1 min (mm h ⁻¹)	Total depth (mm)
Storm A	800	120	90.2
Storm B	930	90	16.8

>Rainfall events

- Storm A 23h00, 17th Feb 2008 to 12h00, 18th Feb 2008
- Storm B 15h00, 7th April 2008 to 21h00, 7th April 2008

>Affected properties

Buildings inside flood-prone areas

> Public transportation services

- >0.3 m water depth, >1 hour
- 2 tram routes
- 8 bus routes

Consequences for each flood-prone area

>Affected properties

Buildings inside flood-prone areas

>Public transportation services

- >0.3 m water depth, >1 hour
- 2 tram routes
- 8 bus routes

>Pedestrian safety

- HR = d(v+0.5) + DF (HR Wallingford et al, 2006)
 - o V flow velocity (m s⁻¹)
 - o d flood depth (m)
 - o DF debris factor (0 or 1 if water depth <0.25 m or >0.25 m)

>Assessment of flooding (rainfall) likelihood

- Flooding likelihood depends on the conditions of the catchment (e.g. soil saturation) and sewer system (e.g. sediments)
- Rainfall likelihood based on the IDF curves for Lisbon (Brandão et al., 2001)

Storms	Return period (years)	Probability (%)	Likelihood class
Storm A	350	0.3	2
Storm B	2	39.3	5

>Estimation of flooding consequences

• Calculated water depths for overland flow paths >0.2 m

Number of flood-prone areas...

Consequence class	affecting properties		affecting public transportation services	
	Storm A	Storm B	Storm A	Storm B
1	695(80.2%)	797(91.1%)	860 (99.2%)	866 (99.9%)
2	166 (19.1%)	69 (8.0%)	0	0
3	6 (0.7%)	1 (0.1%)	5 (0.6%)	1 (0.1%)
4	0	0	0	0
5	0	0	2 (0.2%)	0

>Estimation of flooding consequences

- Calculated water depths for overland flow paths >0.2 m
- Majority (aprox 90%) of flood-prone areas in classes 1 and 2, i.e. insignificant and low consequences

... affecting properties

... affecting public transportation services

... affecting pedestrian safety

>Assessment of flooding consequences

- Calculated water depths for overland flow paths >0.2 m
- Majority (aprox 90%) of flood-prone areas in classes 1 and 2, i.e. insignificant and low consequences

... affecting properties

... affecting public transportation services

... affecting pedestrian safety

>Flooding risk

Combination of Likelihood and maximum of analysed
Consequence dimensions

Conclusions

>For the case study, only localised high flooding risk was estimated

>1D/1D and 1D/2D flood models can produce useful results to estimate flood risk

• The methodology presented here can be implemented using both approaches

The risk matrix method is an easy to implement method to estimate risk

Conclusions

>Definition of classes (likelihood and consequence) reduces subjectivity

>How to deal with flood event probability/ likelihood?

>Risk matrix can be applied to different consequence dimensions

>Equivalent classes for different consequence dimensions

Thank for your attention.

jpleitao@lnec.pt