

Performance of auto-calibration algorithms in the field of urban drainage modelling

Authors:

Michael Mair* Manfred Kleidorfer* Wolfgang Rauch* <michael.mair@uibk.ac.at> <manfred.kleidorfer@uibk.ac.at> <wolfgang.rauch@uibk.ac.at>

* Unit of Environmental Engineering – University of Innsbruck - Austria

Unit of Environmental Engineering

Challenges

- Model calibration is a time consuming and complex task
- Calibration algorithms: LM, PSO, GA,...
- Objective functions: E,SSE,...
- Testing of possible solution candidates and evaluating one or several objective functions
- Find global optimum within the fitness landscape which is defined by objective functions

Unit of Environmental Engineering

Challenges

- Model calibration is a time consuming and complex task
- Calibration algorithms: LM, PSO, GA,...
- Objective functions: E,SSE,...
- Testing of possible solution candidates and evaluating one or several objective functions
- Find global optimum within the fitness landscape which is defined by objective functions

Performance:

- Number of needed iterations within a calibration ? (Speed)
- Impact of objective function on computational performance ? (Speed)
- Ability to identify the optimum ? (Accuracy)

Generated uncalibrated models

Results after model calibration

Number of iterations

Objective function / optimisation algorithm

Summary

Automatic performance tests of calibration algorithms with different objective functions

Summary

Automatic performance tests of calibration algorithms with different objective functions

Model independent (using Calimero framework)

Summary

Automatic performance tests of calibration algorithms with different objective functions

Model independent (using Calimero framework)

PIs: Computational performance and accuracy of calibration

Thank you

This work is part of the DynaVIBe project funded by the Austrian Science Fund (FWF): P 23250-N24.

Generated uncalibrated models

