Performance of auto-calibration algorithms in the field of urban drainage modelling

Authors: Michael Mair* <michael.mair@uibk.ac.at>
 Manfred Kleidorfer* <manfred.kleidorfer@uibk.ac.at>
 Wolfgang Rauch* <wolfgang.rauch@uibk.ac.at>

* Unit of Environmental Engineering – University of Innsbruck - Austria
Challenges

• Model calibration is a time consuming and complex task
• Calibration algorithms: LM, PSO, GA,...
• Objective functions: E, SSE, ...
• Testing of possible solution candidates and evaluating one or several objective functions
• Find global optimum within the fitness landscape which is defined by objective functions
Challenges

• Model calibration is a time consuming and complex task
• Calibration algorithms: LM, PSO, GA,...
• Objective functions: E, SSE,...
• Testing of possible solution candidates and evaluating one or several objective functions
• Find global optimum within the fitness landscape which is defined by objective functions

Performance:

• Number of needed iterations within a calibration ? (Speed)
• Impact of objective function on computational performance ? (Speed)
• Ability to identify the optimum ? (Accuracy)
Benchmark system

Real system (calibrated UDM) → Generate uncalibrated model → Initial model

Initial model → Model calibration → Calibrated model

Calibrated model → Real system (calibrated UDM)
Generated uncalibrated models
Results after model calibration
Number of iterations

Objective function / optimisation algorithm

- E/ILM
- SSE/ILM
- EPSO
- SSE/PSO
Summary

Automatic performance tests of calibration algorithms with different objective functions
Summary

Automatic performance tests of calibration algorithms with different objective functions

Model independent (using Calimero framework)
Automatic performance tests of calibration algorithms with different objective functions

Model independent (using Calimero framework)

PIs: Computational performance and accuracy of calibration
Thank you

This work is part of the DynaVIBe project funded by the Austrian Science Fund (FWF): P 23250-N24.
Generated uncalibrated models