

Modelling Low Impact Development Potential with Hydrological Response Units

Marija Eric, Celia Fan, Darko Joksimovic, James Li

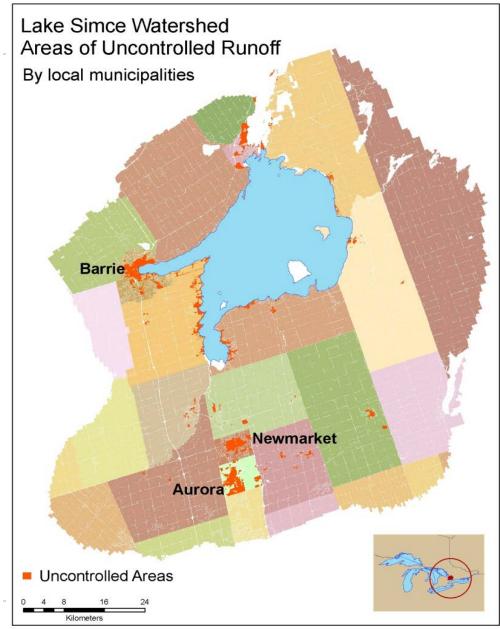
The 9th International Joint IWA/IAHR Conference on URBAN DRAINAGE MODELLING

3 - 7 September 2012 Belgrade, Serbia University of Belgrade, Faculty of Civil Engineering

Specialist Conferences

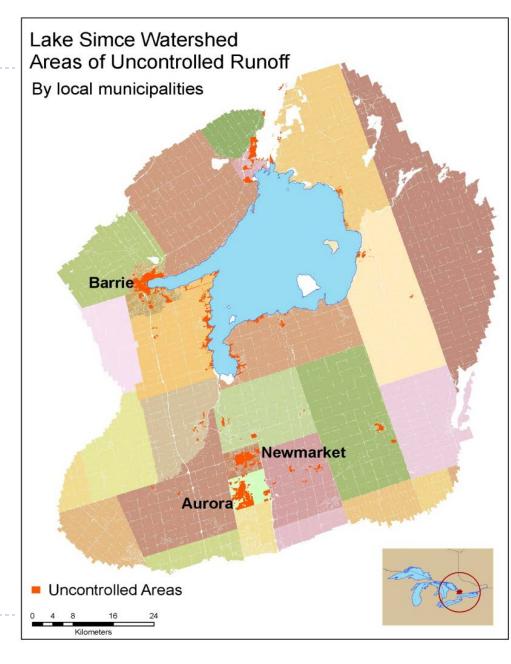
Outline

- I. Background and Objective
- GIS in Screening and Development of LID
 Opportunities and Development of UHRUs
- 3. Modelling Methodology
 - UHRU Hydrologic Models
 - Performance Curves
- 4. Results of Application of the Methodology


5. Conclusions

Background

- Lake Simcoe Protection
 Plan
 - Action Plan
 - Specific Targets P Loading
- New developments stormwater management master plans
- Retrofits

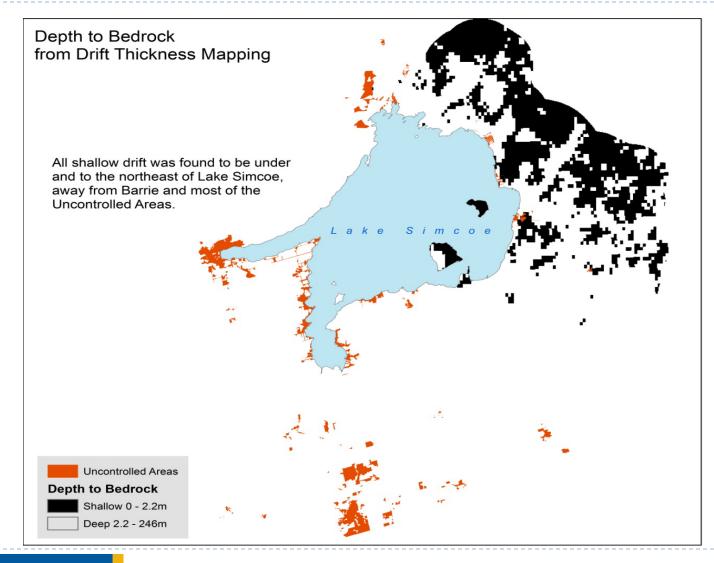

RYERSON UNIVERSIT

- Controlled/controllable areas (using conventional measures)
- Uncontrolled areas

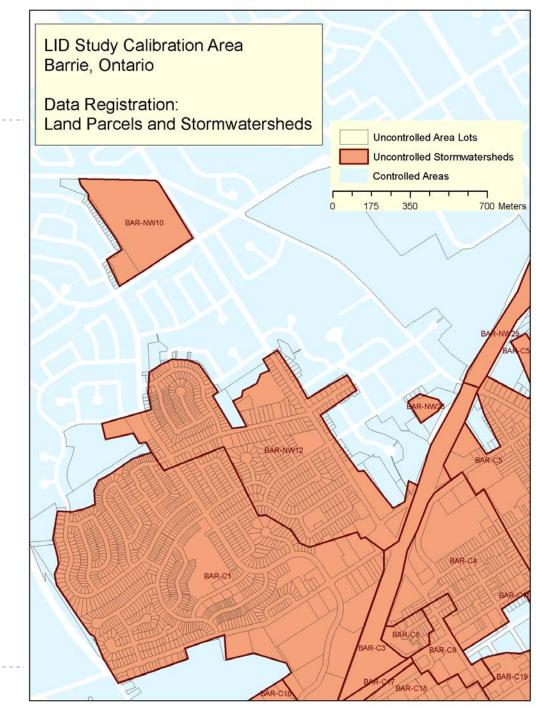
Objective

 Identify opportunities and estimate the potential benefits of watershedwide implementation of LIDs (in uncontrolled areas)

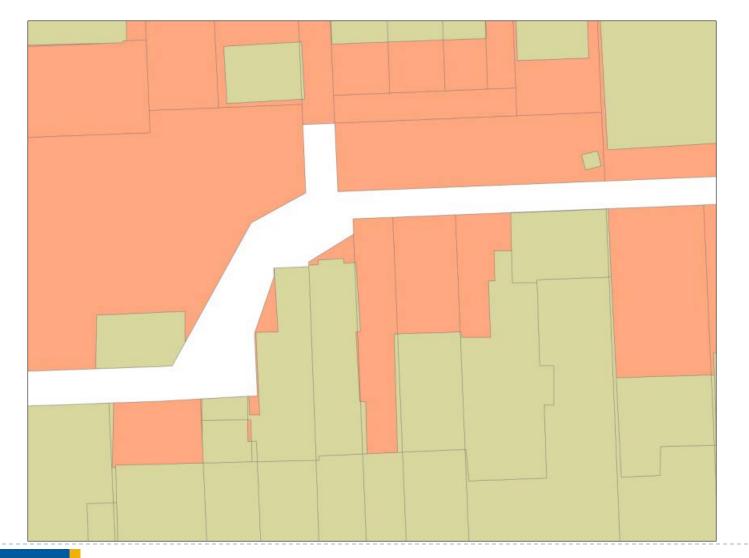
Lot Level LID Practices

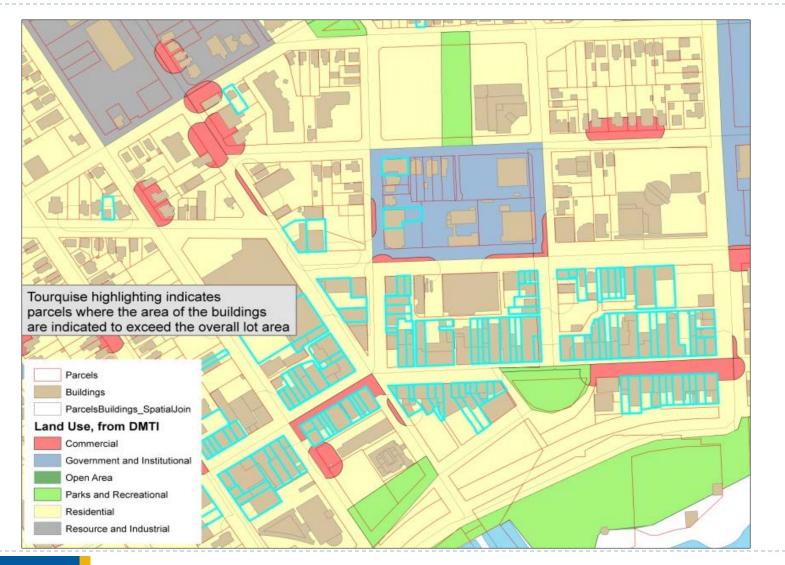

Soakaway pit, dry well, rain harvesting, downspout disconnection, greenroof, bioretention cell, porous pavement, 17 combinations

SRYERSON UNIVERSITY


GIS in Screening of LID

Lot-based LID Retrofit Opportunities


- Essential criteria for identifying potentially appropriate LID procedures for any particular lot:
 - soil depth
 - soil infiltration rate
 - slope steepness
 - land use
 - typical drainage area beyond setbacks
 - building sizes and other building-attribute details
 - Iand use categories
 - public land ownership


Imperfect conformity between lots and stormwatersheds

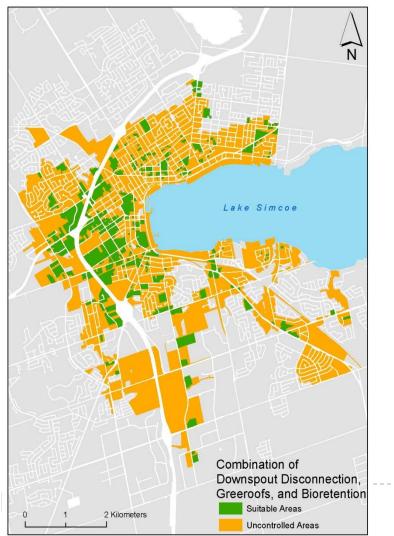
Imperfect registration of buildings (green) on lots (orange)

Buildings identified as being larger than their lots were clipped to lot bundaries

Buildings by size; the smallest (darkest) buildings were removed for screening some LIDs

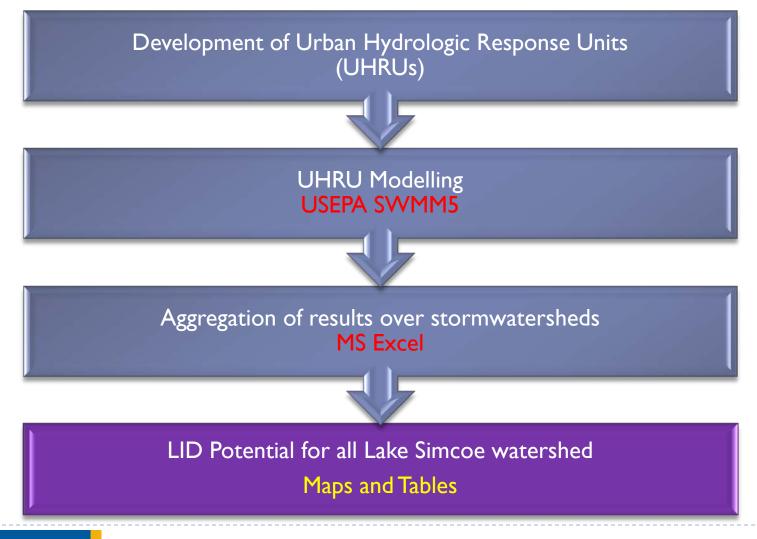
Parking lots (turquoise) were largely unclosed polygons which are unsuited for calculating impermeable portions of lots.

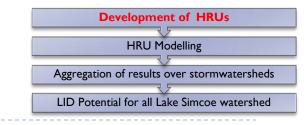
Layers	Barrie	Newmarket	East Gwillimbury	Aurora			
Parcels	Comprehensive (from LSRCA/Teranet)						
Parking	Completed	Present	None	None			
Driveways	Present	None	None	None			
Buildings	Comprehensive (except attributes)	Comprehensive (except attributes)	None	None			
Land Use	Satisfa	ctory (from LSRCA and	d DMTI)	Comprehensive			
Sidewalks	Sidewalks Present rest		None	Incomplete, lines			
Soils	Comp	Complete (Hydrographic Classes and Depths, from LSRCA)					
Roads	Completed (lines)	Require restructuring (lines)	Present (lines)	Present (lines)			
Storm	Storm						
Drainage	Present (lines)	Comprehensive	Present	Present			
System	System						
Ditches	Present	None	None	None			
Parks	Present	Present	from LSRCA	Present			
DEM/DTM	from LSRCA						


RYERSON UNIVERSITY

LID Screening

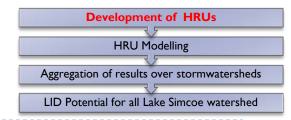
Screening of sites suited to each individual lot-based LID have been mapped, demonstrating that conditions are appropriate and choices exist




LID Screening sites for combinations of lot-based LIDs have now been demonstrated to be appropriate:

Modelling Methodology

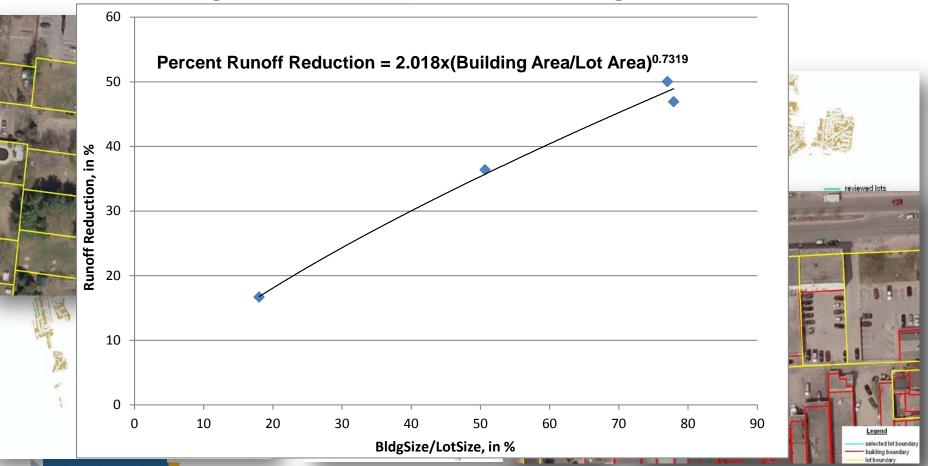
Lot-Based UHRUs

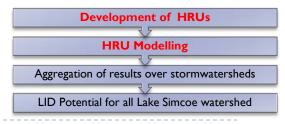

Lot as a basic unit

Use of GIS screening results

- Hydrologic similarity
- LID opportunities

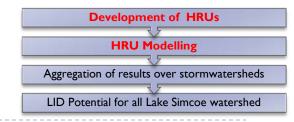
Procedure

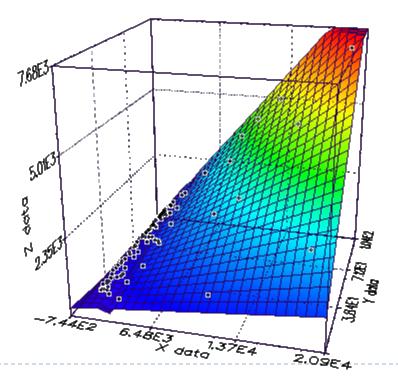

- Examine the distribution of lots produced by screening
- Select three regions, based on lot properties
- Select one lot to be modeled from each region
- Model selected lots (existing and with LID)
- Develop UHRU performance curves
 - Runoff reduction
 - Pollutant loading reduction (TSS, P, Zn)

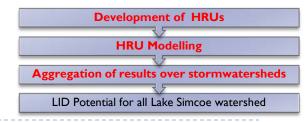


Areas for Modeling

Example: Soakaway pits in residential areas

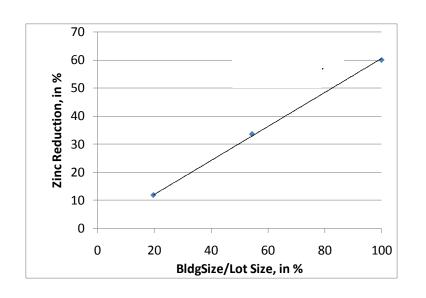

Examining and selection of lots in each region


Modelling Inputs


- Rainfall Data
 - Hourly records 1968-2003 for local gauge analyzed
 - Average year (1985) precipitation used
- Evapotranspiration
 - Provided by LSRCA
- Pollutant concentrations
 - EMC based on Toronto WWFMMP Study (no local data available)
- LID Sizing assumptions
 - 2003 Ontario Ministry of Environment guidelines
- Typical pollutant removal assumed (literature)

Existing Conditions Runoff

- Aggregation of modeled lot results
- Functional relationship using lot area and percent imperviousness

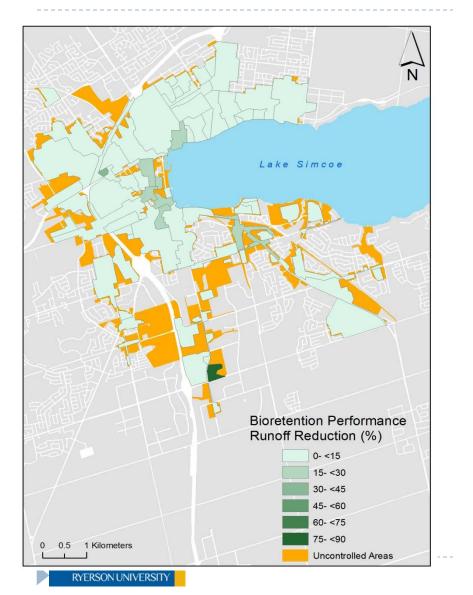


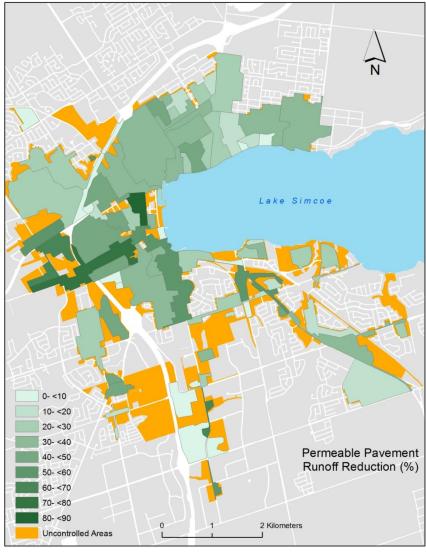
Aggregation of Results

Spreadsheet model

LID performance on stormwatershed basis (e.g. greenroof)

	Stormsewershed	Applicable Area of LIDs		RUNOFF VOLUME CALCULATION					
Stormsewershed	Area, in			Total Runoff per	Runoff of Applicable Area,		Runoff Reduction		
ID	m ²	. 2		Stormsewershed,	in m ³		Kulloli Keduction		
	m	in m ²	in %	in m ³	(no LID)	(with LID)	in m ³	in %	
BAR-C1	1,071,533	257,125	24.0	157,130	64,963	58,275	6,688	4.3	

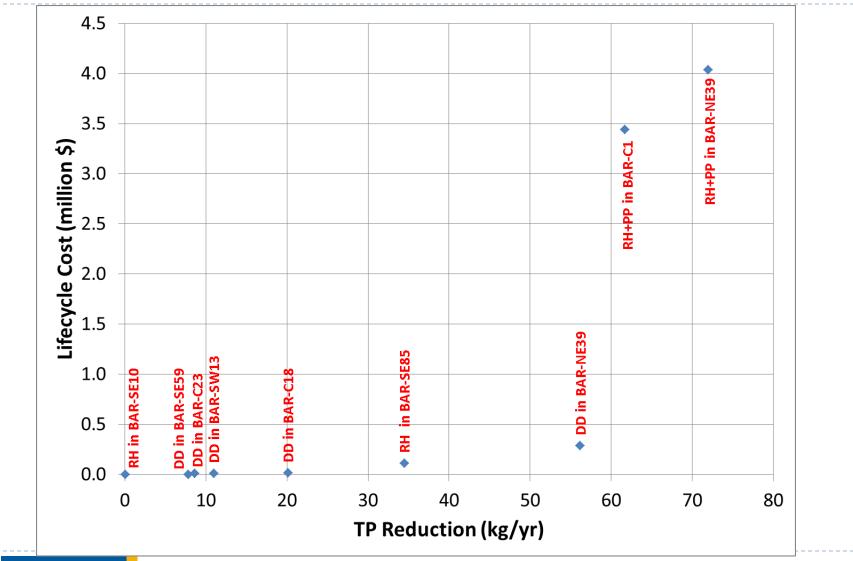



TOTAL PHOSPHORUS (TP) LOADING								
TP per	TP of Ap	plicable	TP Loading					
Stormsewershed,	Area, i	n kg/yr	Increasing					
in kg/yr	(no LID)	(with LID)	in kg/yr	in %				
108.1	35.9	36.4	-0.48	-0.44				

TOTAL SUSPENDED SOLID (TSS) LOADING							
TSS per	TSS of A	pplicable	TSS Loading				
Stormsewershed,	Area, i	n kg/yr	Reduction				
in kg/yr	(no LID)	(with LID)	in kg/yr	in %			
24,572	4,779	3,596	1,184	4.8			

ZINC LOADING								
Zinc per Stormsewershed,		pplicable n kg/yr	Zinc Loading Reduction					
in kg/yr	(no LID)	(with LID)	in kg/yr	in %				
43.2	26.0	20.7	5.2	12.1				

Aggregation of Modeling Results in Barrie Performance Maps: Lot-based: Individual LIDs



Reduction (%) values for runoff and pollutant reduction

	Overall Reduction								
	Runoff		ТР	ТР		TSS		Zinc	
LID Types	m³	%	t/y	%	t/y	%	t/y	in %	
RH	437940	17.69	0.5884	34.42	129.4	33.07	0.2505	37.11	
DD	355711	14.37	0.4956	29	115.1	29.43	0.1899	28.13	
DW	386677	15.62	0.3471	20.31	85.57	21.88	0.1866	27.65	
GR	141950	5.734	-0.01103	-0.6455	33.74	8.627	0.1	14.82	
SP	258322	10.43	0.544	31.83	174.5	44.61	0.1263	18.71	
РР	986709	39.86	0.6566	38.42	140.8	36	0.000174	0.02573	
BR	202018	8.161	0.2838	16.61	11.54	2.95	0.008585	1.272	
BR+PP	637274	25.74	0.4512	26.4	120	30.68	0.1363	20.2	
DW+BR	325362	13.14	0.3421	20.02	104.3	26.66	0.1081	16.02	
DW+PP	721235	29.13	0.5963	34.89	170.1	43.48	0.1513	22.42	
GR+DD	215003	8.685	0.2485	14.54	43.77	11.19	0.1432	21.21	
GR+DW	197244	7.968	0.03769	2.205	41.27	10.55	0.1328	19.68	
GR+PP	339392	13.71	0.209938	12.28	66.502	17	0.095362	14.13	
GR+RH	175004	7.069	0.43263	25.31	38.897	9.945	0.12923	19.15	
GR+SP	193066	7.799	0.05101	2.985	41.77	10.68	0.1307	19.36	

Cost vs. Runoff Reduction for all Stormwatersheds

Summary and Conclusions

UHRU approach

- Allows watershed evaluation of implementation of small scale practices
- Flexible
 - Range of LID practices
 - Choice of hydrologic modelling tools
- Prioritization and ranking of future efforts

Current / Future work

- Refinement of performance curves
 - Clustering (according to lot properties)
 - Sensitivity analyses
 - Uncertainty