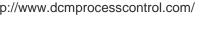


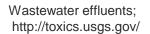
Tracing of micropollutants sources in urban receiving waters based on sediment fingerprinting

A. E. Sikorska^{1,2}, A. Scheidegger², Chiaia-Hernandez A. C.², Hollender J.² and J. Rieckermann²

> [1] Warsaw University of Life Sciences-SGGW, Dept. of Hydraulic Engineering, Poland [2] Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dept. of Urban Water Management, Switzerland

> > e-mail: anna_sikorska@sggw.pl


9th International Conference on Urban Drainage Modelling 4rd of the September, 2012, Belgrade



Micropollution problem

- Increase of occurrence in water bodies
- Difficulties in managing **because**:
- Various places of an introduction into the environment (entry points):
 - wastewater effluents
 - combined sewer overflows
 - stormwater discharges
 - and diffuse inputs from arable land
- Simultaneous application of the same micropollutant within catchments of mixed land use type (e.g. biocides and pesticides are often used simultaneously in urban and agricultural areas)

Wastewater; http://www.dcmprocesscontrol.com/

Stormwater effluents, http://www.andoverks.com/

Micropollution problem

- Increase of occurrence in water bodies
- Difficulties in managing **because**:

Wastewater; http://www.dcmprocesscontrol.com/

- Various places of an introduction into the environn
 - waste Needed fast methods to screen receiving
 - comb waters for micropollutants to identify their

sources

- storm
- and c
- Simultaneous application of the same micropollutant within catchments of mixed land use type (e.g. biocides and pesticides are often used simultaneously in urban and agricultural areas)

Wastewater effluents; http://toxics.usgs.gov/

Stormwater effluents, http://www.andoverks.com/

Our research questions

http://www.ci.hillsborough.nc.us/

- 1. Can **sediments** from surface waters act as **passive samplers** of medium polar contaminants?
- 2. Does such a sample contain information of the **pollutant sources**?

Our approach

Agriculture

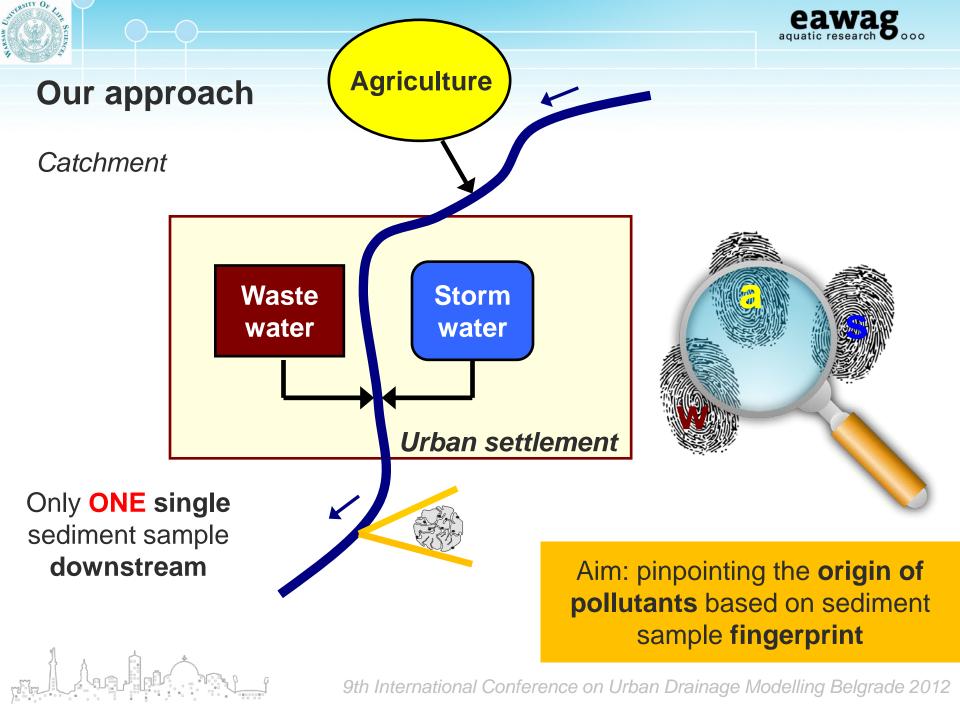
Waste

water

Advantage:

- 1) Medium polar micropollutants sorb onto sediments
- 2) Each land use type has a different and
- unique micropollutants composition (fingerprint)

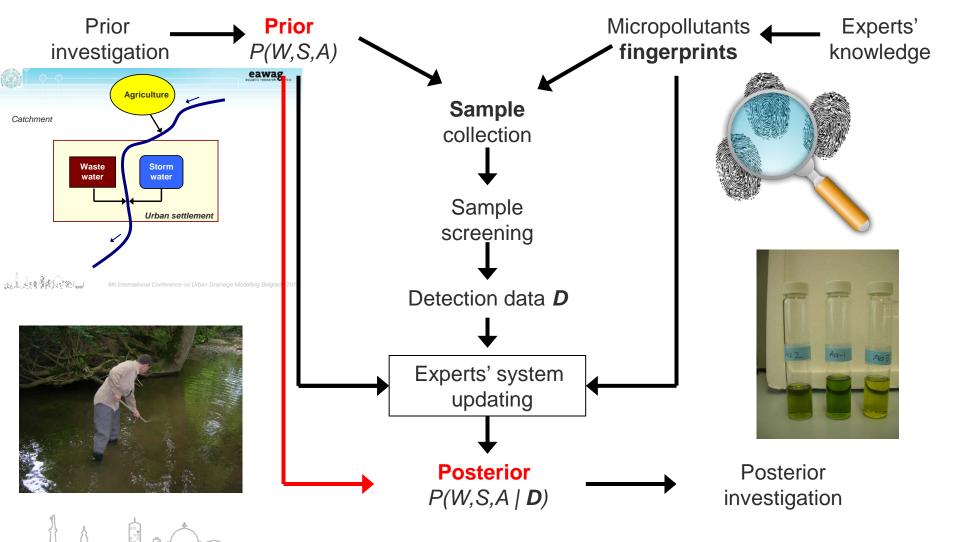
Adapted from Barret et al.., 2009

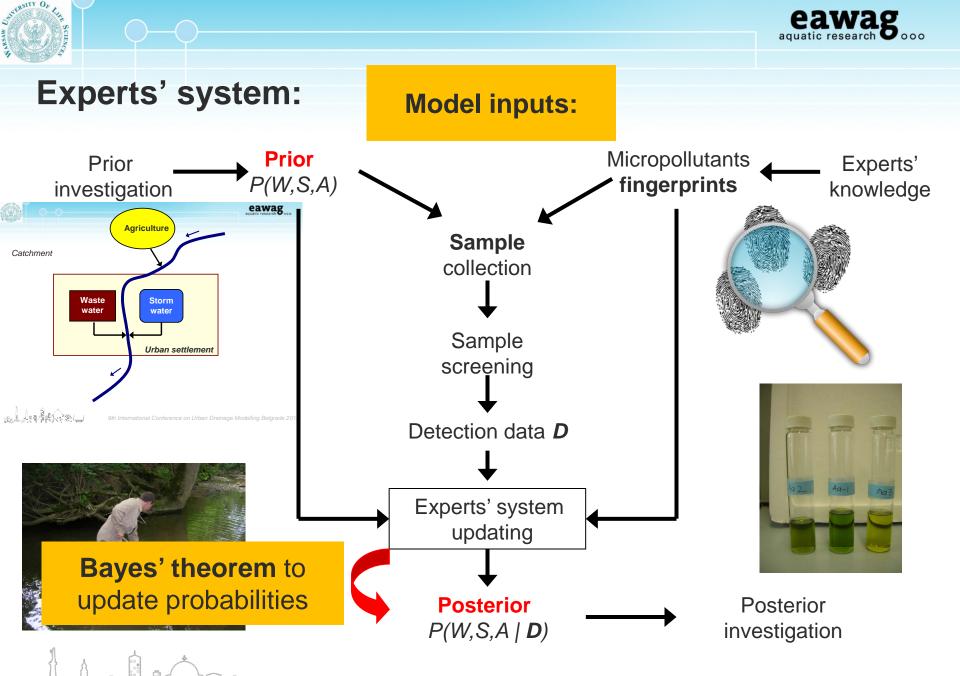

Particle

Micropollutant

Storm

water


Sediment sample from different land use types has a unique fingerprint

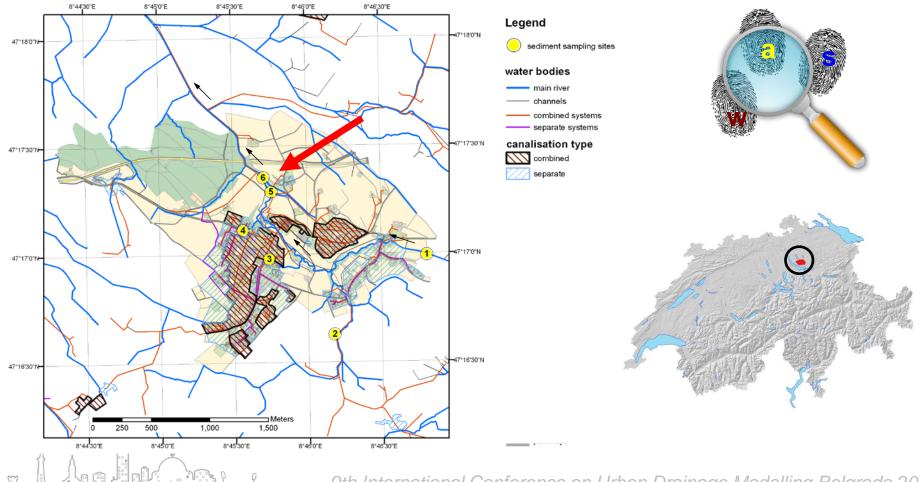


Experts' system:

Posterior investigation

Where model can be **useful**?

To support water management communities:


- As a cheap and fast **first screening** based on a **single sample** to optimize future measurement campaigns;
- By **pinpointing** where within an urbanized catchment **a problem with micropollutions** most probably occurs
- and where detailed monitoring is required

Case Study

Mönchaltorfer Aa catchment / the community of Grüningen

Area = 8.8 km^2 ; Population = 3200 people

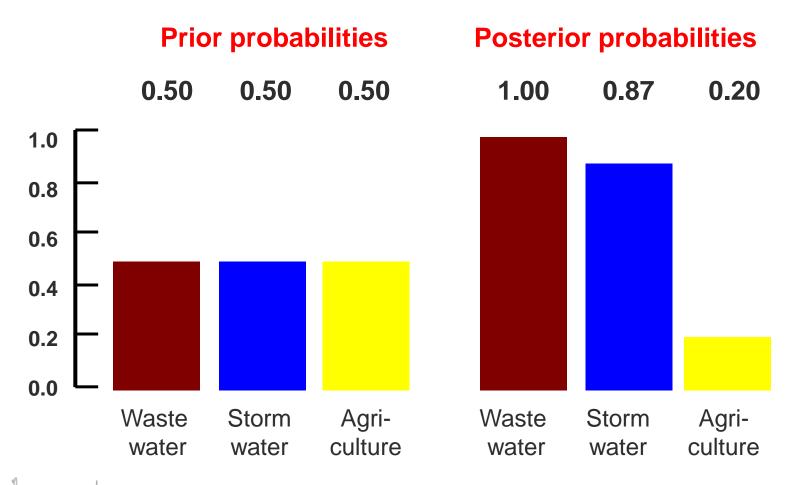
Analyzed micropollutants

The screening method using **HPLC-HRMS** (*liquid chromatography - high resolution mass spectrometry*) includes **225** compounds:

- personal care products,
- biocides,
 - Experts' knowledge on micropollutants sources
- From
 - 17 biociaes,
 - 17 pesticides,
 - 16 pharmaceuticals,
 - 6 personal care products,
 - and 1 UV-light stabilizer

or their respective transformation products.

mples:



Results for the Mönchaltorfer Aa (Grüningen)

Prior and posterior probabilities of micropollutants sources

Conclusions

Advantages of our approach:

- Cheap and fast first screening to optimize future measurement campaigns
- **Promising approach:** usage of sediments as passive samplers of medium polar contaminants to trace their sources in surface water
- Efficient: allows locating the existence of the most probable pollutant sources within an urbanized watershed based on a single sample.
- **Practicable:** does not require expensive monitoring campaigns
- Initiative: support water management communities by pinpointing where within a catchment a problem with micropollutions most probably occurs and where detailed monitoring is required
- Readily transferable: to other catchments (priors can be adapted to local knowledge)

Conclusions

Limitations of the approach:

due to the costs of the chemical analysis:

- Not yet optimal:
 - chemical analysis is still labour-intensive
 - high analytical cost only allows the analysis of few samples
 - possible false negatives: some compounds might go undetected
 - number of detected substances may influence the robustness of the results

Qualitative analysis is much **cheaper** than **quantitative**:

- → fast and cheap screening method to get useful results
- → can be employed in great numbers more samples (case studies) may be analyzed

Conclusions

Limitations of the approach:

due to the costs of the chemical analysis:

- Not yet optimal:
 - chemical analysis is still labour-intensive

Perspectives:

- → Chemical analysis **cheaper** and **more accessible**
- → Including more **specific tracers**
- Tracing sediments based on micropollutants

Qualitative analysis is much cheaper than quantitative:

- → fast and cheap screening method to get useful results
- → can be employed in great numbers more samples (case studies) may be analyzed

Tracing of micropollutants sources in urban receiving waters based on sediment fingerprinting

A. E. Sikorska^{1,2}, A. Scheidegger², Chiaia-Hernandez A. C.², Hollender J.² and J. Rieckermann²

> [1] Warsaw University of Life Sciences-SGGW, Dept. of Hydraulic Engineering, Poland [2] Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dept. of Urban Water Management, Switzerland

> > e-mail: anna_sikorska@sggw.pl

9th International Conference on Urban Drainage Modelling 4rd of the September, 2012, Belgrade

