

Model based monitoring of stormwater runoff quality

Heidi Birch, Luca Vezzaro, Peter Steen Mikkelsen

DTU Environment Department of Environmental Engineering

Monitoring of stormwater

- European Water Framework Directive 2000
 - Obtaining a good chemical and ecological status of surface waters
 - Stormwater treatment is essential to meet environmental quality standards (EQS)
 - Stormwater monitoring is important to focus the effort
- Large variation in concentrations between sites
 Different sources depending on the catchment
- Large variation over time Many priority pollutants Volume-proportional Large expenses Expensive sampling analyses
- Need for a smarter way of monitoring

EU-WFD perspectives on monitoring

Our perspectives on monitoring

DTU Environment Department of Environmental Engineering

Aim

- Investigate how different monitoring strategies affect the information obtained through sampling campaigns
- Combinations of
 - Volume proportional sampling (TSS, Cu, Zn, Fluoranthene)
 - Passive samplers (Cu, Zn)
 - Dynamic stormwater quality model
- Annual average (AA) concentrations in discharges were evaluated as a measure which can be evaluated against AA-EQSs (when dilution at the actual site and rain periods has been taken into account).
- Maximum event mean concentrations (EMCs) were evaluated as a measure to compare to maximum allowable concentrations, MAC-EQS.

Case study - background

- Earlier monitoring at the site (2010) included flow measurements and volume-proportional sampling of Cu and Zn (6 events) and fluoranthene (2 events)
- The data was used to calibrate a dynamic stormwater quality model

Sampling 2011

Flow-through passive samplers

Volume proportional sampling

Flow-through passive sampler

SorbiCell

• Built-in tracer measure how much water has passed the sampler

Accumulates analytes when water is pressed through

Dynamic stormwater quality model

- Calibrated using the GLUE method
- Informal likelihood:

$$L_{quality} = L_{TSS} \cdot L_{MP},$$

or:

$$L_{quality} = 0.25 \cdot L_{TSS} + 0.75 \cdot L_{Cu}$$

where:

$$L = \frac{1}{\sigma_e^2}$$

Monitoring scenarios

Data/method used	Scenarios								
	a	b			d	e	f	8	
Lognormal distribution	X	X	\mathbb{N}/\mathbb{N}						\backslash
Dynamic stormwater quality model			X	K	X	x	X	X	$ \rangle$
Earlier measurements of TSS & MP (2010)	X	X	X	K	X	x	X	X	
TSS measurements from current period (2011)					X	X		X	/
MP measurements from current period (2011)		x				X	Ň.		/
Passive sampler measurements	X	X		\int	K		X	X	

Annual average

 AA evaluated based on a 10 year rainfall series and the identified 'behavioral' parameter sets

Zn Annual Average

DTU Environment Department of Environmental Engineering

Maximum event mean concentrations

- Models can be used to evaluate return periods for event mean concentrations (EMCs)
- Model uncertainty bounds show that 95% of EMCs for a 1 year event is below 950 μg/L for Zn and 310 μg/L for Cu.

Department of Environmental Engineering

Maximum event mean concentrations

Conclusions

- Use of a dynamic stormwater quality model reduced model uncertainty on predicted annual average concentrations compared to uncertainty on the mean of a lognormal distribution of EMCs
- A combination of using one passive sampler measurement and 6 EMCs for calibration reduced model uncertainty compared to using 10 EMCs for calibration.
- Including passive samplers and modelling in monitoring can potentially reduce costs and give information about averages as well as dynamics in the system.

Peter Steen Mikkelsen psmi@env.dtu.dk

Acknowledgements

- Technical and logistic help:
 - Thomas Aabling, Orbicon
 - Anitha Sharma, DTU
- Finansial support from:
 - Copenhagen Energy (KE)
 - Minstry of Science, Technology and Innovation
 - Technical University of Denmark (DTU)
 - Albertslund Municipality
 - Interreg IV B North Sea Regional Programme through the project "Diffuse Pollution" (DIPOL)
 - 2BG: Integrated Infrastructure Planning as a Key to Sustainable Urban Water Systems (www.2BG.dk)

