The 9th International Joint IWA/IAHR Conference on URBAN DRAINAGE MODELLING

3 - 7 September 2012 Belgrade, Serbia University of Belgrade, Faculty of Civil Engineering

A C O General Conference Sponsor

MODELLING SEDIMENT BED AGGRADATION IN STORM WATER/COMBINED SEWERS

<u>A. Campisano</u>, C. Modica Department of Civil and Environmental Engineering University of Catania

INTRODUCTION

- Drainage systems serving peri-urban catchments are often plagued by the entrance of large amounts of sediments
- The existing mismatch between catchments sediment input rate and the channel sediment transport capacity can determine <u>deposition</u> and bed <u>aggradation</u>
- Deposition phenomena in channels can assume troblesome sizes in systems without inlet protection (i.e. <u>open</u> <u>drains</u> or storm water channels)
- Aggradation processes can be responsible for flow capacity <u>restrictions</u>, increased overall hydraulic <u>roughness</u> of the channel/drain and increased risks of <u>overflow</u>, depending on geometrical and hydraulic characteristics of the channel

INTRODUCTION

- Data on aggradation processes available by <u>laboratory experiments</u> in flumes
- Experimental campaign at SAFL (Saint Anthony Falls Laboratory), University of Minnesota (Seal et al., 1997), monitoring <u>bed profile</u> <u>evolution</u> and sediment transport in rectangular flumes
- On the other side, <u>lots of approaches</u> to model aggradation process, mainly with regard to river engineering (models for uniform sediments, for sediment mixtures, 1D and 2D modelling)
- Also different approaches have been adopted to solve the equations governing flow and sediment (uncoupled, semi-coupled and fully coupled models) and to describe the <u>mutual interactions</u> between water flow and sediment bed within each simulation time step

MODEL DESCRIPTION

- Based on the semi-coupled solution of the 1D De Saint Venant equations
- Full coupling is accomplished only if governing equations are solved in a <u>not conservative</u> form, then producing <u>numerical errors</u> in correspondence to high gradients in water flow variables (i.e. hydraulic jumps, deposition fronts, etc.)
- No need of using 2D modelling to describe aggradation processes in open drains
- Moreover, the description of the evolution of the bed deposit profile is often <u>sufficient</u> for such systems to evaluate restrictions or risks of overflows

MODEL DESCRIPTION

• Fully dynamic 1D-De Saint Venant Equations written in conservative form:

$$\frac{\partial \mathbf{U}}{\partial t} + \frac{\partial \mathbf{F}(\mathbf{U})}{\partial x} = \mathbf{D}(\mathbf{U})$$
$$\mathbf{U} = \begin{bmatrix} A \\ Q \\ A_s \end{bmatrix} \qquad \mathbf{F}(\mathbf{U}) = \begin{bmatrix} Q \\ V \cdot Q + \frac{F_h}{\rho} \\ \frac{1}{1-p} \cdot Q_s \end{bmatrix} \qquad \mathbf{D}(\mathbf{U}) = \begin{bmatrix} 0 \\ \frac{F_h}{\rho} + g \cdot A \cdot (i-J) \\ \frac{1}{1-p} \cdot q_{ls} \end{bmatrix}$$

• The solution of such equation requires to use a <u>sediment transport</u> <u>formula</u> to estimate the sediment discharge Q_s

MODEL DESCRIPTION

- Three well known bed load transport formulas were implemented in the model to simulate the SAFL experiments:
 - Meyer-Peter-Muller, 1948
 - Suszka, 1991
 - Ackers, 1984
- The finite difference scheme of TVD-MacCormack was used for the numerical solution, since it is a "<u>shock-capturing</u>" scheme able to describe discontinuities such as hydraulic jumps and steep mobile bed fronts, then <u>suitable</u> for the analysis of aggradation process.
- The sediment input into the flume was simulated as <u>lateral sediment</u> <u>inflow</u> q_{ls} per unit of flume length to overcome numerical problems experienced in literature and to obtain a realistic description of the experimental feeding conditions at SAFL

SAFL EXPERIMENTS

 Six aggradation experiments (runs 1-6) were performed at SAFL using a 55 m long laboratory flume with rectangular cross section

Run	Duration <i>T</i> [h]	Flume width <i>B</i> [m]	Bottom slope <i>i</i> [%]	Water discharge Q [m ³ /s]	Sediment discharge <i>Q</i> _s [m ³ /s]	Downstream water level h _v [m]
1	16.83	0.305	0.2	0.049	4.762 10 ⁻⁵	0.40
2	32.40	0.305	0.2	0.049	2.381 10 ⁻⁵	0.45
3	64.00	0.305	0.2	0.049	1.193 10 ⁻⁵	0.50
4	24.00	2.700	1.0	0.440	10.62 10 ⁻⁵	0.50
5	17.00	2.700	1.0	0.110	3.669 10 ⁻⁵	0.15
6	27.00	0.305	1.0	0.122	7.887 10 ⁻⁵	0.15

- The sediment has:
- ρ_s=2650 kg/m³
- d₅₀=4.63 mm
- σ=5.57 mm
- typical of the coarser part of deposits.

Focus to run 3, with lots of measurements.

Meyer-Peter-Muller (1948)

The 9th International Joint IWA/IAHR Conference on URBAN DRAINAGE MODELLING 3 - 7 September 2012

Belgrade, Serbia

Suszka (1991)

The 9th International Joint IWA/IAHR Conference on **URBAN DRAINAGE MODELLING** 3 - 7 September 2012 Belgrade, Serbia

Ackers (1984)

The 9th International Joint IWA/IAHR Conference on URBAN DRAINAGE MODELLING 3 - 7 September 2012

University of Belgrade, Faculty of Civil Engineering

Belgrade, Serbia

Belgrade, Serbia

The 9th International Joint IWA/IAHR Conference on URBAN DRAINAGE MODELLING 3 - 7 September 2012

University of Belgrade, Faculty of Civil Engineering

CEDEX

RUN 2 - Suszka (1991)

The 9th International Joint IWA/IAHR Conference on **URBAN DRAINAGE MODELLING** 3 - 7 September 2012 Belgrade, Serbia

University of Belgrade, Faculty of Civil Engineering

CEDEX

RUN 6 - Suszka (1991)

The 9th International Joint IWA/IAHR Conference on **URBAN DRAINAGE MODELLING** 3 - 7 September 2012 Belgrade, Serbia

Values of RMSE for bed elevations and water elevations

	Run 1		Run 2		Run 3		Run 4		Run 5		Run 6	
Formula	BE	WE	BE	WE	BE	WE	BE	WE	BE	WE	BE	WE
Meyer-Peter and Müller (1948)	0.042	0.037	0.033	0.037	0.061	0.053	0.015	0.013	0.015	-	0.016	0.021
Suszka (1991)	0.020	0.026	0.028	0.040	0.029	0.036	0.016	0.014	0.015	-	0.012	0.012
Ackers (1984)	0.012	0.022	0.034	0.040	0.058	0.065	0.012	0.022	0.160	-	0.018	0.024

The 9th International Joint IWA/IAHR Conference on **URBAN DRAINAGE MODELLING** 3 - 7 September 2012 Belgrade, Serbia

University of Belgrade, Faculty of Civil Engineering

CONCLUSIONS

- Numerical investigation to model sediment bed aggradation in open drains /stormwater channels
- Well known bed load transport formulas used to describe the sediment transport process
- Model comparison with experimental results at SAFL concerning temporal evolution of the deposit
- Model <u>globally able</u> to successfully describe the process with some <u>differences</u> depending on the used sediment transport formula
- According to the size of the SAFL sediment, results are <u>limited</u> to the coarser portion of sediments forming deposits in drains

Thank you for your attention

The 9th International Joint IWA/IAHR Conference on URBAN DRAINAGE MODELLING 3 - 7 September 2012

Belgrade, Serbia University of Belgrade, Faculty of Civil Engineering

CEDEX