

9th International Conference on Urban Drainage Modelling, Belgrade 2012

Verification of flood damage modelling using insurance data

Qianqian Zhou¹; Toke E. P. Petersen²; Bo J. Thorsen²; Karsten Arnbjerg-Nielsen¹

 $G_{20+0_2} \leq C_2 + H_2$

- ¹ Technical University of Denmark
- ² University of Copenhagen

DTU Environment Department of Environmental Engineering

{2.71828182

Climate change and Insured costs

State-of-the-art modelling approach

Insurance data as a means

Objectives & Main questions

To what extent:

- is it possible to model the *damage per claim* given information about the *rainfall*?
- is it possible to model the cost per day given information about the rainfall?
- can simple *indicators* of flood risk give reliable information about the *flood risk*?
- can the insurance data be used to verify the hazard and flood risk maps in terms of frequency and severity of damages?

Case study

Area:

Aarhus: rainfall & damage Risskov: hazard & Vulnerability modelling

Insurance data:

>1000 insurance claims Geocoded Year 2005-2011

Rainfall data:

Maximum hour intensity Daily rainfall depth Annual variation_month Year 2005-2011

Correlation between claimed damage & rainfall characteristics

 $sqrt(D) = \mu + a * d + b * x + c Month + \varepsilon$

X: hour precipitation intensity

d: rainfall depth per day

Month: annual variations described by a factor variable for each month

	Daily depth, d	Max hour intensity, x	Annual variation, Month
Cost per claim			
Cost per day	***	**	***
† significant at 10%, * significant at 5 %, ** significant at 1%, *** significant at 0.1%			

Correlation between claimed damage & rainfall characteristics

Correlation between claimed damage & rainfall characteristics

Flood hazard modelling

Simple GIS toolboxes used in the insurance industry

- To identify flood zones or assess risk of flood
- Based on simple risk indicators, e.g. topography and slope
- Digital Elevation Models as inputs
- Wetness index calculations and local depression identifications
- 1D-2D coupled inundation models
 - Input rainfall
 - Topographical characteristics
 - Drainage systems

Flood hazard modelling

Local depression map

Combined overview

Verification of damage assessment

Location of damage:

good statistical agreement for the high hazard events

Costing of damage:

results were less clear and damage costs are lower than expected. Possible reasons, e.g. individual protection measures

Conclusions

- Simple rainfall statistics are not able to describe the variation in cost per claim; however, prove feasible for the overall daily claimed costs
- Simple GIS-operations are not helpful in giving reliable information on flood hazards.
- Insurance data are valuable for calibrating inundation modelling, although it's difficult to accurately identify the flood location for the low hazard category.
- Take into account socioeconomic variables for better explanation of costing of damage per claim
- Improvements on data collection and analysis are required.

Thanks for your attention!