

Global Sensitivity Analysis and Multi-Objective Optimisation

for Estimation of Combined Sewer Overflows

V. Gamerith¹, M. Wendner¹, M. Hochedlinger², M. Möderl³ and G.Gruber¹

¹ Graz University of Technology Institute of Urban Water Management and Landscape Engineering

² Linz AG – Wastewater

³ Innsbruck University
Unit of Environmental Engineering

Introduction Frame

- **7th EU framework project SUDPLAN**(Sustainable Urban Development Planner for climate change Adaption)
 - Web based decision support platform in urban infrastructure for extreme events due to climate change effects
- Pilot study Linz
 - Evaluate impact of climate change scenarios on combined sewer overflows
- Assessment according to Austrian requirements
 - Meet defined CSO efficiency rate; long term simulations
- Project and results: WCE Dublin and WWC Busan

IntroductionToday's presentation

- Model preparation, analysis and calibration
 - Results from Master thesis (Wendner 2011)

Aim

- Apply readily available methods to real-world example
- Sound model basis for SUDPLAN project & evaluation of climate change scenarios

Methods

- Data evaluation
- Global sensitivity analysis (GSA) Morris Screening
- Multi-objective calibration Optimiser based on evolution strategies

IntroductionToday's presentation

- Model preparation, analysis and calibration
 - Results from Master thesis (Wendner 2011)

Aim

- Apply readily available methods to real-world example
- Sound model basis for SUDPLAN project & evaluation of climate change scenarios

Methods

- Data evaluation
- Global sensitivity analysis (GSA) Morris Screening
- Multi-objective calibration Optimiser based on evolution strategies

Introduction Linz Pilot Catchment

Google Maps, 2012

Introduction Linz Pilot Catchment

- Downtown Linz and39 neighbour communes
 - Total area ~ 900 km²
 - 950 000 PE
- Combined & separate system
- Several CSO tanks, pumps and specials structures

Introduction

Linz Pilot Catchment

Limited knowledge about system

- especially for neighbour communes
- Partly real time controlled since 2005
 - "Semi-automatic" (manual) operation
- Calibration pre-2005 status
 - 3 in-sewer water level measurements
 - 1 rain gauge

MethodsAustrian requirements

Efficiency rate η

- Percentage of stormwater runoff routed to WWTP on annual average
- For dissolved (η_d) and particulate pollutants (η_p)

Required efficiency rates

Defined in Austrian RB19 guideline

Actual efficiency rate

- Calculated by simulation model in long-term simulations
- sedimentation efficiency in storage units for particulate pollutants

MethodsSewer Model

Aggregated model in SWMM 5

- Basic model set up: Innsbruck University
- Model evaluation: Wendner (2011)

All relevant structures included

- 43 combined sewer overflows
- Pumps and storage units

Computational demand

 One year simulation = 20 minutes simulation time

Gamerith et al. (2011)

Methodology Investigated model parameters

parameter	unit	short description
MAN	s/m ^{1/3}	Manning's n
IMP1	%	Imperviousness neighbour communes
IMP2	%	Imperviousness downtown Linz
IMP3	%	Imperviousness creek area
P2	%	Max. pump rate
STS	%	Sedimentation efficiency
SV	%	Storage volume

- 7 parameters derived from available base data
- Three zones for imperviousness
- Except MAN:
 percentage range
 from prior catchment
 data evaluation
 (Wendner)
- Uniform distribution

Methods GSA and Optimisation

- GSA: Evaluate parameter sensitivities for long-term efficiency rates as defined in Austrian requirements
- Determine parameters that are
 - important in model calibration (factor fixing) or
 - would profit of a better prior evaluation (factor prioritisation)
- Optimiser: Calibrate the model based on GSA results
 - Try to best calibrate parameters sensitive for effeciency rate with available data
 - Multi-objective calibration on several events
- Both methods: coupling with SWMM via BlueM.OPT

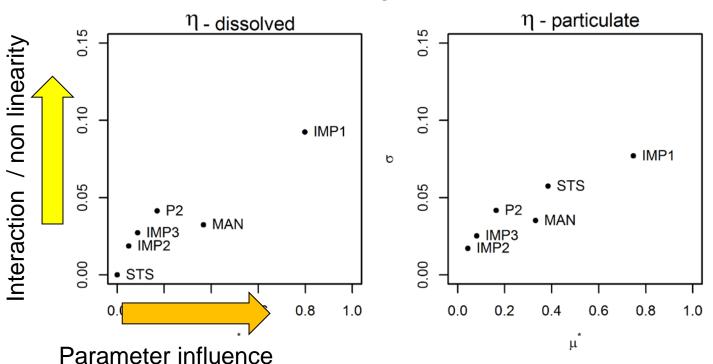
Methods Global Sensitivity Analysis – Morris Screening

Why Morris Screening?

- Computational demand low compared to other methods
- Ranking and identification of interaction / non-linearity
- Settings: 7 parameters with 20 repetitions
 160 simulation runs (approx. 55 hours)

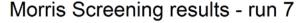
Evaluation of sensitivities for CSO efficiency rates

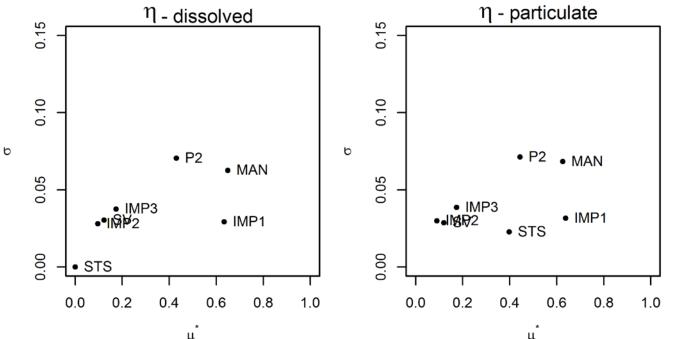
independent from reference measurement data


Morris Screening runs with different parameter limits

- Explore impact of parameter range assumption
- Parameter ranges chosen arbitrarily and adapted in 7 consecutive Morris Screening runs

Results Morris Screening


Morris Screening results - run 3



MAN	0.015 0.020
IMP1	±50
IMP2	±10
IMP3	±80
P2	±20
STS	±50
SV	-

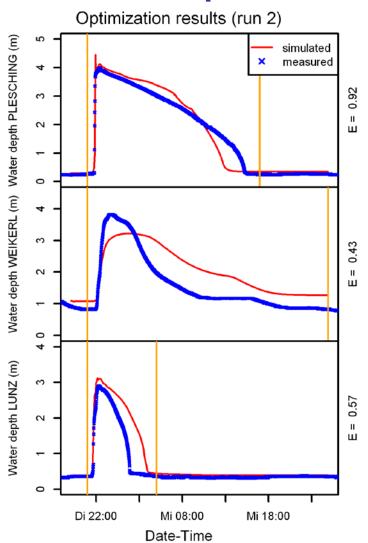
Results Morris Screening

MAN	0.015 0.020	
IMP1	±20 <	
IMP2	±10	
IMP3	±80	
P2	±20	
STS	±20 ¬	
SV	±60	

- Overall behaviour similar with different parameter settings
- **MP1**, MAN, (P2) sensitive, STS for η_p
- IMP2, IMP3, SV low sensitivity
 - IMP3 with large variation range

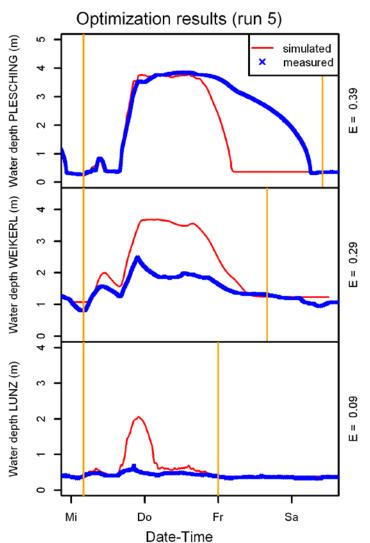
Methodology Optimisation – Evolution Strategies

Multi – Objective optimisation


- Optimiser based on evolution strategies
- Simultaneously for 3 water level measurements
- Objective function: Nash-Sutcliffe efficiency E
- Evaluation of percentage bias as informative criterion

Calibration parameters

- MAN, IMP1, IMP2, IMP3 and P2
- 5 independent, single rainfall events
- Final parameter set
 - weighted parameters based on E (arbitrary)


ResultsOptimisation / Model Calibration

- Best fit
- E from 0.43 to 0.92
- Timing and peak well fit.
- Percentage bias
 - +1% (PLESCHING)
 - -23% (WEIKERL)
 - -36% (LUNZ).

ResultsOptimisation / Model Calibration

- Worst fit
- E from 0.09 to 0.4
- Start time and peak fit for PLESCHING
- Percentage bias
 - +32% (PLESCHING)
 - -50% (WEIKERL)
 - -71% (LUNZ)
- uniform rainfall distribution for large catchment

Results

Model Calibration – Summary parameters

- MAN sensitive, calibration results in narrow range (+- 0.001 s/m^{1/3})
- Imperviousness generally decreased.
 - IMP1 sensitive & high variability in the optimised values.
 - IMP2 is stable with a reduction to ~ 90% in all optimisation runs.
 - **IMP3** reduced to 20 to 45%. Low sensitivity reduces identifiably
- Pump rate generally decreased
- **Validation** of the model with weighted parameter set was done on one event (*E* values of 0.5 to 0.6)

Conclusions GSA & Optimisation

GSA allowed identifying and ranking parameters

Different parameter limits impact on importance ranking

For the investigated model

- Prioritise neighbour communes
- IMP3 (creek catchment): a lot of effort put in prior evaluation for small influence on results

Optimisation & Calibration

- Parameter sensitivity prerequisite for parameter calibration
- Different calibration quality for different events
- Use of spatially distributed rainfall

Conclusions & Outlook

- GSA and optimisation methods applied on (computational heavy) SWMM model
 - Real-world application
 - Methods readily available
 - Complexity of methods manageable
- Better knowledge on parameters and model behaviour
- Promote use of methods
 - ...also in engineering practice