

Air pocket removal from downward sloping pipes

9th Int. IWA/IAHR Conference Urban Drainage Modelling, Belgrade

Ivo Pothof – Deltares, Industrial Hydrodynamics Delft University of Technology, Urban Drainage

Background of Joint Industry Project CAPWAT

- CAPacity loss
- waste WATer mains
- Air accumulation in downward sloping sections
- Consequences
 - Energy losses
 - More maintenance
 - More investments
 - Unreliable transport capacity

- CAPWAT project 2003 2010
 - Water boards, pump manufacturer, consultants, Stowa, RIONED
 - Deltares, DUT

Facility in Hoek van Holland (video)

Key questions of CAPWAT

- What is required water velocity to move an elongated air pocket?
- How long should a certain water velocity be maintained to break down an air pocket?

- What are feasible mitigating measures?
- Need for practical guidelines

Approach for air pocket removal model

- Validated numerical model for steady air discharge
 - Geometry: Pipe diameter, pipe angle, length of slope
 - Operation: water discharge, gas pocket length, absolute pressure

- Assume no air inflow, then air outflow
 - reduces gas pocket length/head loss
 - reduces absolute pressure
 - may increase water discharge or reduce pump speed
- Integration in time yields
 - Evolution of gas pocket length and head loss,
 - Required water volume for head loss reduction

Air discharge highly varies due to gas pocket length

Assumptions for air pocket removal model

- Water is at normal depth under air pocket(s)
- Air pocket length and head loss are linearly related
- Air expansion is isothermal
- Air expansion in upstream section is neglected

- Validation experiments
 - $F_w = 0.63$; 0.75 and 0.94

Experiment at 25 l/s, 0.86 m/s, F_w = 0.63

Model performance

Conclusions and discussion

- Reasonable performance
 - required time and
 - water volume for air pocket removal
- However,
 - Air discharge is over-predicted for very large air pockets
 - If multiple air pockets are present (F_w>0.6), pressure recovery in hydraulic jumps should not be neglected.

Range of applications

- Air pocket removal in inverted siphons
- Air pockets behaviour in hydropower bottom outlets
- Air pockets behaviour in stormwater storage tunnels

• Questions?

i.w.m.pothof@tudelft.nl or ivo.pothof@deltares.nl

Approach – scientific track

- Lab measurements of co-current air-water flow in downward sloping pipes
 - Pipe diameter, pipe angle, air-water discharge ratio, equilibrium gas pocket length, absolute pressure
- Experiments at large-scale facility at WWTP
 - Length of sloping reach, water quality
 - 3 series of experiments
 - > Clean water
 - > Water with detergents
 - > Untreated wastewater

Overview of air-water flow experiments

Angle(°) Pipe D (m)	5	10	12.5	20	30	90
0.080			30 / 77			
0.110		27 / 78				
0.150		30 / 105				
0.192		209 / 130*)				
0.220	<i>30 /</i> 90	30 / 95		30 / 51	30 / 83	10 / 98
0.220		<i>21 /</i> 61		57 / 55		
0.500		25 / 23				

Key results - Flow regimes

Approach – practical track

- 3 progress meetings / workshops per year
 - Input for Handbook
- Handbook on hydraulic design & operation of pressurised wastewater mains

- Editorial Board from participants
- Input from scientific track
- First release 2010, update 2011 (Dutch)

Handbook structure – Flow diagrams

Table of Contents

- 1. Preface
- 2. Design of wastewater transportation systems
- 3. Pipeline design
- 4. Pumping station design
- 5. Transient events
- 6. Review of integrated system
- Design considerations to maintain the hydraulic capacity
- 8. Commissioning of the system
- 9. Monitoring the hydraulic capacity
- 10. Literature.

Possible air management measures

- Pump stop procedure (soft-stop)
- Raise switch-off level
- Vertical deflection plate in pump pit
- Include pigging facility (Y-piece)
- Reduce diameter of inverted siphon
- See paper for more

CAPWAT applications

- Wastewater engineering
 - Design minimise air-entrainment into pipeline
 - Operation prevent capacity issues and excessive energy consumption

- Operation compute water volume to breakdown air accumulation
- Stormwater storage tunnels and hydropower stations
 - Better understanding of air pocket motion
 - Prevent blow-back events
 - Proper venting
- Two-phase flow applications
 - Donwardly inclined pipe as efficient separator
 - Possibly improve slug prediction models

Approach – co-current air-water experiments

- Measured variables
 - Air discharge (controlled)
 - Water discharge (controlled)
 - Differential pressure
 - Absolute upstream pressure
 - Water temperature
 - Air pocket characteristics (length, max. height)

