

Modelling and Optimal Control of a Sewer Network

C.1 Hydraulic application (6.9.2012)

Georges Schutz, David Fiorelli, Stefanie Seiffert, Mario Regneri, Kai Klepiszewski

Overview

Case study

The system that is analyzed and controlled

Modelling and calibration

- Use of different model types
- What are the models
- Model calibration & comparison

Model predictive control

- MPC Principals
- Objectives of MPC underlying optimization
- Results based on simulation

Implementation issues

Conclusions

The studied sewer system

Artificial Lake, mainly used for drinking water

Combined sewer network to drain to central WWTP

Modelling and calibration

Use of different model types

Hydrodynamic model

- Planing, case studies, network analysis
- In the context of the research project and the project planning
- Creates data for the calibration of the other models (offline virtual reality)

Simple time-delayed model

- Used inside to the model predictive control
- Implemented in Matlab for offline simulations and Python for the MPC pilot implementation

Hydrological model

- Used for long time simulations and as virtual reality for testing the MPC approach
- Integrated Control Sewer & WWTP (PhD)

Modelling and calibration

Flow time and profile test

Test design and properties

- dry weather situation
- Impounding of the dry weather flow in CSOTs
- Release of the throttled volumes in a given temporal sequence for each CSOT

Test goal

- Allocation of the Qin_{WWTP} pattern to Qout_{CSOT,i}
- identification of individual flow times from each CSOT to the WWTP
- Validation of the hydrodynamic model
- Evaluation of the other models

Modelling and calibration

Result and discussion

- Hydrodynamic model fits quite good to the monitored flows
- NL hydrological model much less detailed compared to the HD-Model but is able to reproduced most of the dynamics.
- Translation Model gets the timing of of the waves good enough for the use in the MPC context.

used principals

System

- Measurements
- Historic data
- Controllable aggregates

Optimizer

- Input forecasting
- Model based output prediction
- Objective-function
- Optimization over prediction horizon

Control loop

- Apply control for u(k+1)
- Run the optimization in real time (△t)
- Update to current system state

for the proposed sewer systems

Multi-Objective function

minimize
$$J = \sum_{n=t}^{t+Hp} \lambda \varphi_1(n) + \beta \varphi_2(n) + \alpha \varphi_3(n)$$

subject to
$$c_i(x)=0$$
 $i \in E$
 $c_i(x) \ge 0$ $i \in I$

Homogenous distribution of the storage

$$\varphi_{1}(n) = \sum_{i=1}^{N} \left[V_{i}(n) - \frac{V_{i} \max}{\sum_{i=1}^{N} V_{i} \max} \sum_{i=1}^{N} V_{i}(n) \right]^{2}$$

Constant inflow to the WWTP

$$\varphi_2(n) = \left[y_{ref}(n) - \sum_{i=1}^{N^*} Out_i(n-d_i) \right]^2$$

Minimum overflow

$$\varphi_3(n) = \sum_{i=1}^{N} [Ov_i(n) - NL]^2$$

some results

some results

09/06/12

- industrial Standard
- Exists for most SCADA hardware
- Software libraries available in FOSS

Global Predictive Control implementation

- Matlab → Python
- End-User system feedback / training / issues
- Fall-back strategies

Conclusions

Different models used in different phases of the project Virtual reality

- important to demonstrate the possible gains of the GPC approach
- important to analyze different control approaches
- validate the effective gains of the controlled system after implementation

Simple sewer model (time delayed / plug flow)

- linear, robust model
- calibration towards the real network affordable
- convex optimization

Further works

- Integrate a global quality component in the simple model
- Handling structural network modifications in the GPC approach