9th International Conference on Urban Drainage Modelling, Belgrade (Serbia), September 2012

Measurement of discharge by the ultrasonic (transittime) method in "degraded mode" using computational fluid dynamics and data analysis

Matthieu DUFRESNE, J.-B. Bardiaux, J. Vazquez, S. Isel, M. Fischer, A. Napoly

Fluid and Solid Mechanics Institute of Strasbourg, France

Projects COACHS and MENTOR-2015

Outline

1. Context and objectives

2. Methodology: a. Discharge determination b. Degraded conditions

3. Conclusion

- Main difficulty = the link between the measured velocity (local variable) and the mean velocity (needed for the determination of the discharge)?
- In particular for non-standard gauging stations (complex geometry with singularities)!

Context

- Advantage of multi-path systems: the whole information is not lost!
- How can we calculate the discharge in such degraded conditions?

(About 15% of loss for the dataset used in this study)

Objectives

• Objective: make discharge determination with ultrasonic transit-time method more reliable

- Objective n°1:

 Development of a methodology for discharge determination for non-standard gauging stations

Objective n°2:

 Development of a methodology in degraded conditions

Outline

1. Context and objectives

2. Methodology: a. Discharge determination b. Degraded conditions

Presented through one test-case: the gauging station 'Milan'

Presentation of the gauging station Milan

Methodology for discharge determination

(methodology presented at ICUD 2011)

Methodology for discharge determination

 $Q = 1.05 \times V_1 \times S_1 + 1.05 \times V_2 \times S_2$

• Three paths are immersed:

 $Q = 0.91 \times V_1 \times S_1 + 0.91 \times V_2 \times S_2 + 1.14 \times V_3 \times S_3$

• Four paths are immersed:

 $Q = 0.91 \times V_1 \times S_1 + 0.91 \times V_2 \times S_2 + 1.06 \times V_3 \times S_3 + 1.10 \times V_4 \times S_4$

Methodology for degraded conditions

Degraaleducctricotiiogis:

Example: path n°1 (V_1) is not working •

 Comparison between optimal functioning and degraded mode (V₁ is not working)

Non-negligible error but:

- Better than loosing the data!
- Can be used for the management of the sewer.

Outline

1. Context and objectives

2. Methodology: a. Discharge determination b. Degraded conditions

3. Conclusion

Gauging station (site, sensor, data)

Methodology for discharge determination Methodology for degraded conditions

- Main goal: make the discharge determination more reliable.
- Two perspectives:
 - Improvement of the degraded relationships while the data are collected.
 - Investigation of more physical degraded relationships (velocity profiles...)

9th International Conference on Urban Drainage Modelling, Belgrade (Serbia), September 2012

Measurement of discharge by the ultrasonic (transittime) method in "degraded mode" using computational fluid dynamics and data analysis

Matthieu DUFRESNE, J.-B. Bardiaux, J. Vazquez, S. Isel, M. Fischer, A. Napoly

Fluid and Solid Mechanics Institute of Strasbourg, France

Projects COACHS and MENTOR-2015

