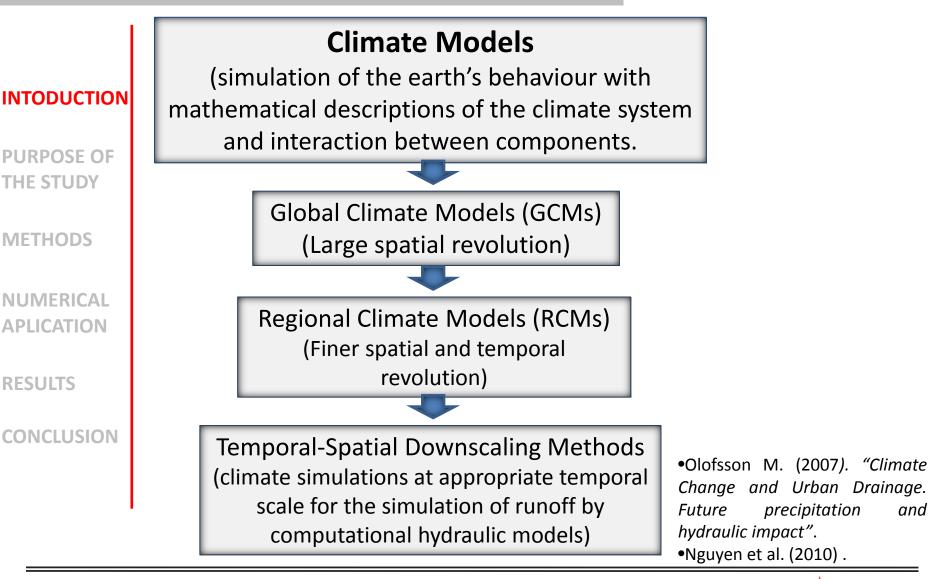

Belgrade 04/09/2012

9th International Conference on Urban Drainage Modelling

"Effects of Climate Change on the Estimation of Intensity-Duration-Frequency (IDF) curves for Thessaloniki, Greece "

Aristotle University of Thessaloniki, Greece G. Terti, P. Galiatsatou, P. Prinos galateia@civil.auth.gr



Aristotle University of Thessaloniki

G. Terti et al galateia@civil.auth.gr

Climate Change prediction

Aristotle University of Thessaloniki

G. Terti et al galateia@civil.auth.gr

Objective of the research

PURPOSE OF THE STUDY

INTODUCTION

METHODS

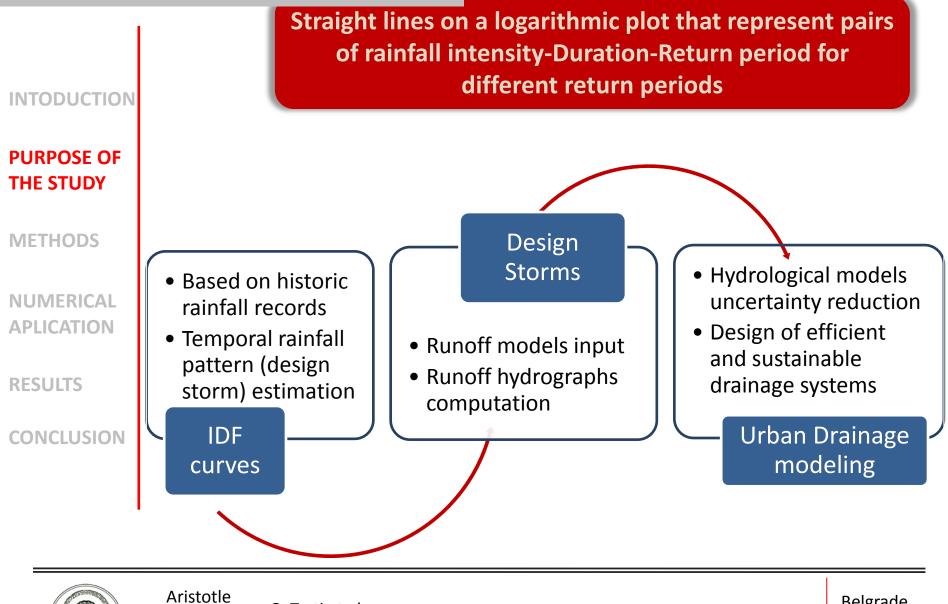
NUMERICAL APLICATION

RESULTS

CONCLUSION

Description & application of a Temporal Downscaling Method on a RCMs data for Thessaloniki

Construction of Intensity-Duration-Frequency (**IDF**) Curves for current and future climates


Assessment of future changes in rainfall depths and intensities for Thessaloniki

Aristotle University of Thessaloniki

G. Terti et al galateia@civil.auth.gr

IDF curves

University of Thessaloniki

G. Terti et al galateia@civil.auth.gr

Methodology

PURPOSE OF THE STUDY

METHODS

NUMERICAL APLICATION

RESULTS

CONCLUSION

The Generalized Extreme Value (GEV) distribution

• Extreme rainfall annual series modelling

The Temporal downscaling GEV distribution

• Description of the relationships between daily and sub-daily extreme precipitations for current and future climate (Nguyen et al., 2002)

Aristotle University of Thessaloniki

G. Terti et al galateia@civil.auth.gr

The Generalized Extreme Value (GEV) distribution

 $F(x) = exp \left\{ -\left[\left(1 + \frac{\xi(x - \mu)}{\sigma} \right) \right]^{\frac{1}{\xi}} \right\}$

The cumulative distribution function, F(x), for the GEV distribution is given as

 $\xi
e 0$

INTODUCTION

PURPOSE OF THE STUDY

METHODS

NUMERICAL APLICATION

RESULTS

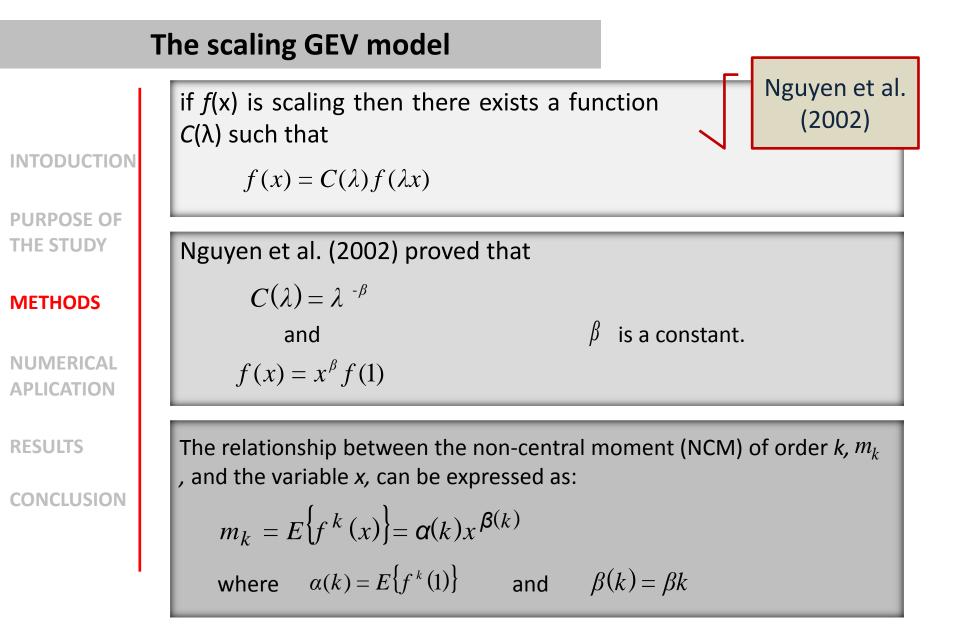
CONCLUSION

Nguyen et al. 2002 showed that the k-th order of Non-Central Moments (NCM), can be expressed as
$$\frac{k}{\sum} \frac{k}{k} \frac{k}{k} \frac{\sigma_{k}}{k} \frac{\sigma_$$

where μ , σ and ξ are the location, scale and shape parameters, respectively.

Here, the three parameters are estimated by the method of L-moments.

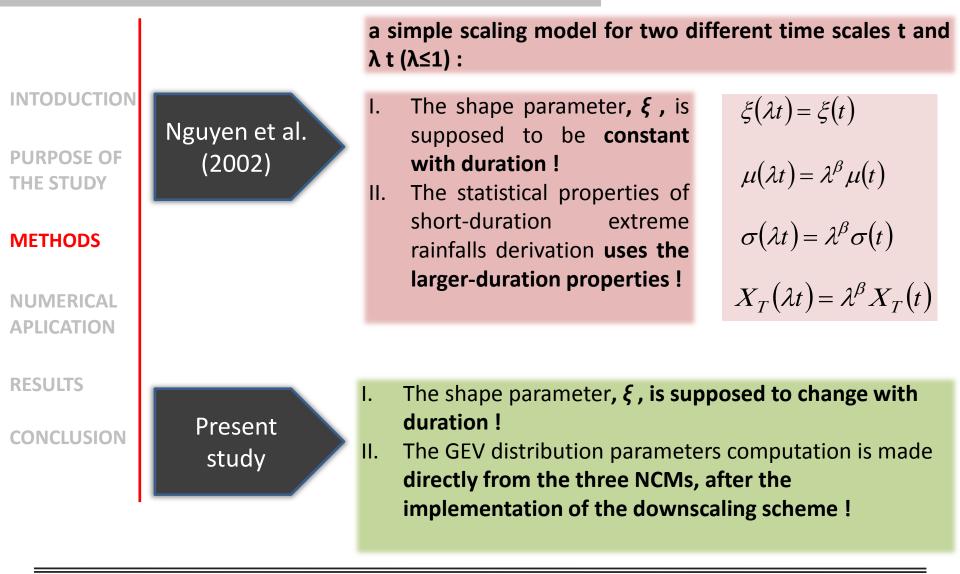
$$m_k = \sum_{i=0}^{\kappa} {k \choose i} (-1)^i \left(-\frac{\sigma}{\xi}\right)^i \left(\mu - \frac{\sigma}{\xi}\right)^{k-i} \Gamma(1-i\xi) \quad \text{, where } \Gamma(.) \text{ is the gamma function.}$$


The quantiles for each return period *T* can be calculated as:

$$X_T = \mu - \frac{\sigma}{\xi} \{1 - [-\ln(1 - p)]^{-\xi}\}$$

where p is the probability of exceedance, related to the return period T: $p = \frac{1}{T}$

Aristotle University of Thessaloniki G. Terti et al galateia@civil.auth.gr



Aristotle University of Thessaloniki

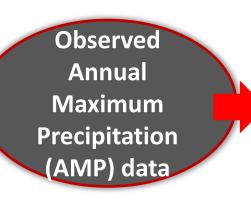
G. Terti et al galateia@civil.auth.gr

The scaling GEV model

Aristotle University of Thessaloniki

G. Terti et al galateia@civil.auth.gr

1. Evaluation of the performance of the downscaling method


PURPOSE OF THE STUDY

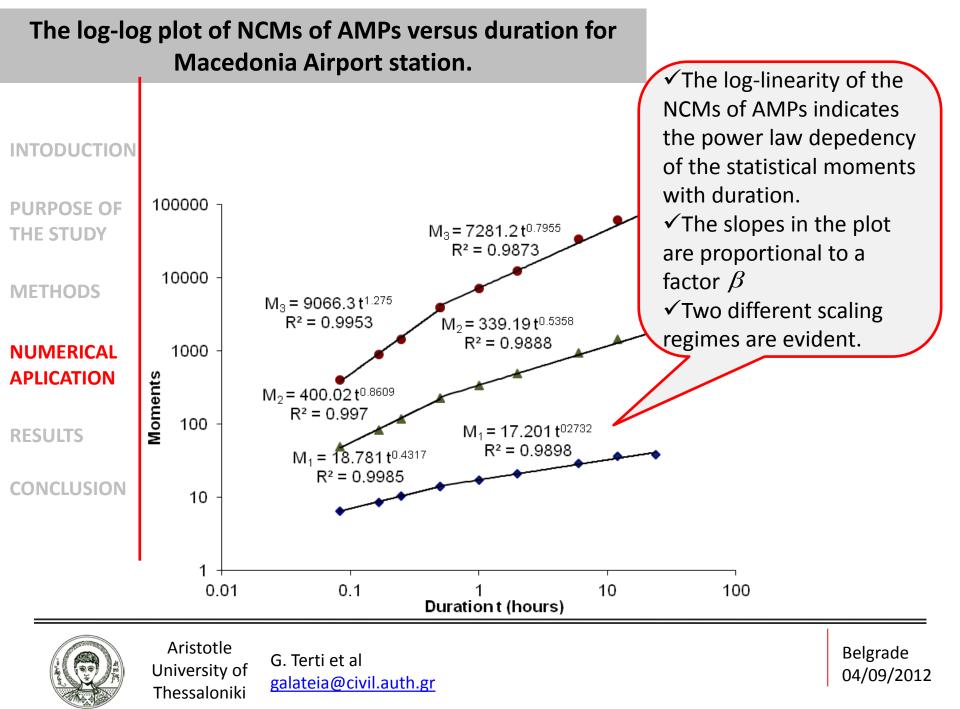
METHODS

NUMERICAL APLICATION

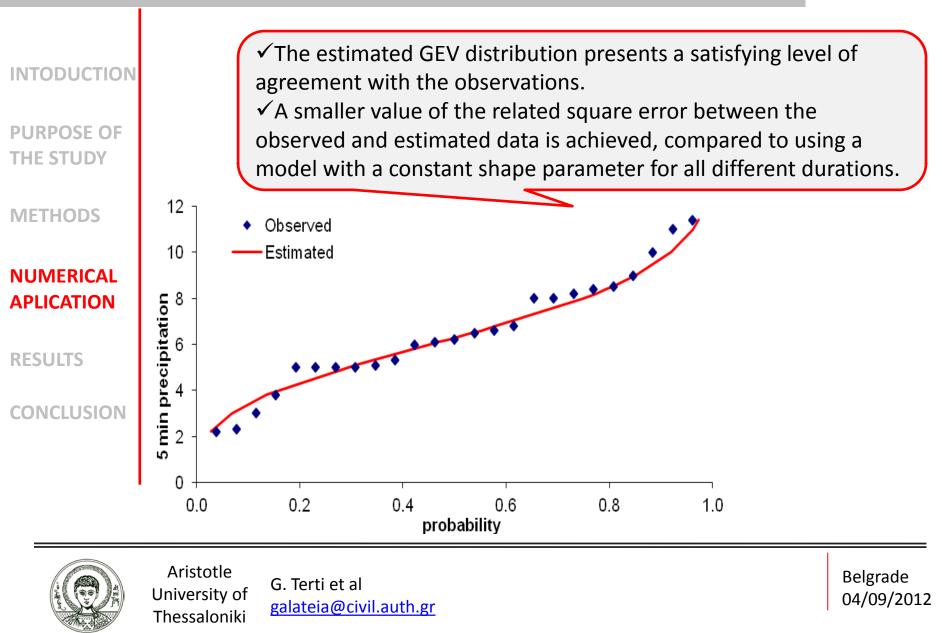
RESULTS

CONCLUSION

Procedure


Represent the annual maximum rainfall depth on a daily or sub-daily basis.
Are available for 9 durations (5, 10, 15, 30 minutes; 1, 2, 6, 12, 24 hours).
Cover 25 continuing years (1963-1987).
Are provided by the HNMS for Thessaloniki Airport Station.

- 1. Investigation of the scaling behaviour of AMP series by constructing the log-log plots of the first three rainfall NCMs against duration.
- Detection of the the linearity of the scaling exponent β(k) with the moment order k.
- 3. comparison between the observed and the estimated (by downscaling) distributions of rainfall depths.



Aristotle University of Thessaloniki


G. Terti et al galateia@civil.auth.gr

Observed and estimated distributions of maximum 5-minute rainfalls for Macedonia Airport station.

2. Derivation of IDF curves

Procedure

- -Represent the annual maximum rainfall depth on a daily basis.
- —Are available for 1 duration (24 hours).
- -Concern current (1950-2000) and future (2001-2100) climate.
- —Are provided by the KNMI-RACMO2 climate model.

NUMERICAL APLICATION

PURPOSE OF

THE STUDY

METHODS

RESULTS

CONCLUSION

- 1. Estimation of the GEV distribution parameters for each duration of the rainfall process, utilizing the three NCMs of the daily rainfall predictions for current and future climate and considering the scaling coefficient $\beta(k)$ to be kept constant for both simulation periods.
- 2. Computation of the sub-daily AMP quantiles for the current and future time periods, following the estimation of the GEV parameters for all sub-daily durations.

Aristotle University of Thessaloniki

G. Terti et al galateia@civil.auth.gr

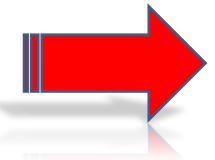
Derivation of IDF curves

INTODUCTION

PURPOSE OF THE STUDY

METHODS

NUMERICAL APLICATION

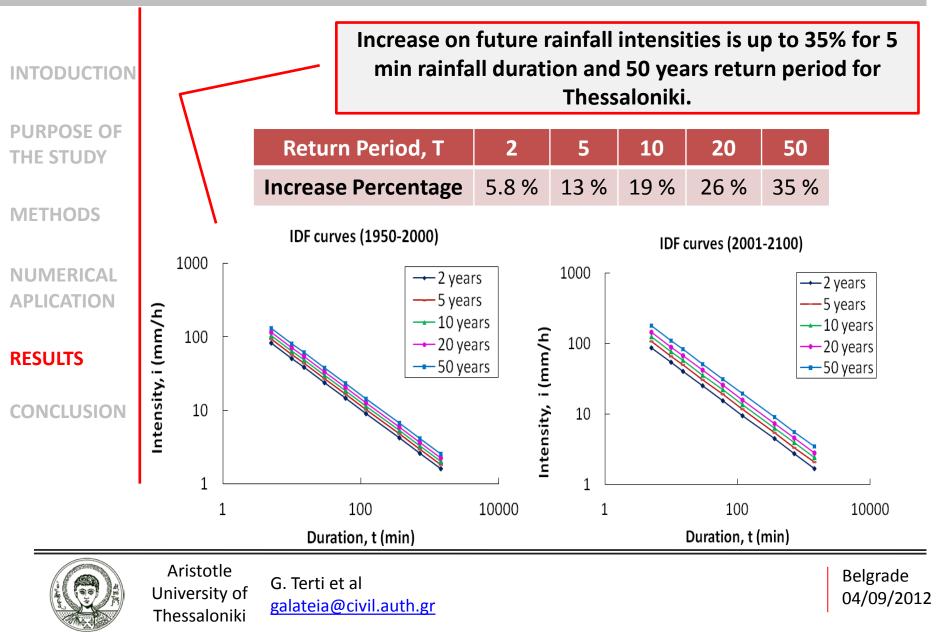

RESULTS

CONCLUSION

Intensity-Duration-Frequency relationships for extreme precipitations for different durations and return periods are derived for current and future climates respectively, using the following relationship

$$i = \frac{a \times T^c}{t^{(1-b)}}$$

where i is the rainfall intensity (mm/h), t the rainfall duration (hours), T the return period (years) and a, b, c constants.



Aristotle University of Thessaloniki

G. Terti et al galateia@civil.auth.gr

IDF curves derived from the downscaled daily rainfall series provided by KNMI-RACMO2 for current (1950-2000) and future climate (2001-2100)

Rainfall intensities for current (1950-2000) and future (2001-2100) climate

INTODUCTION

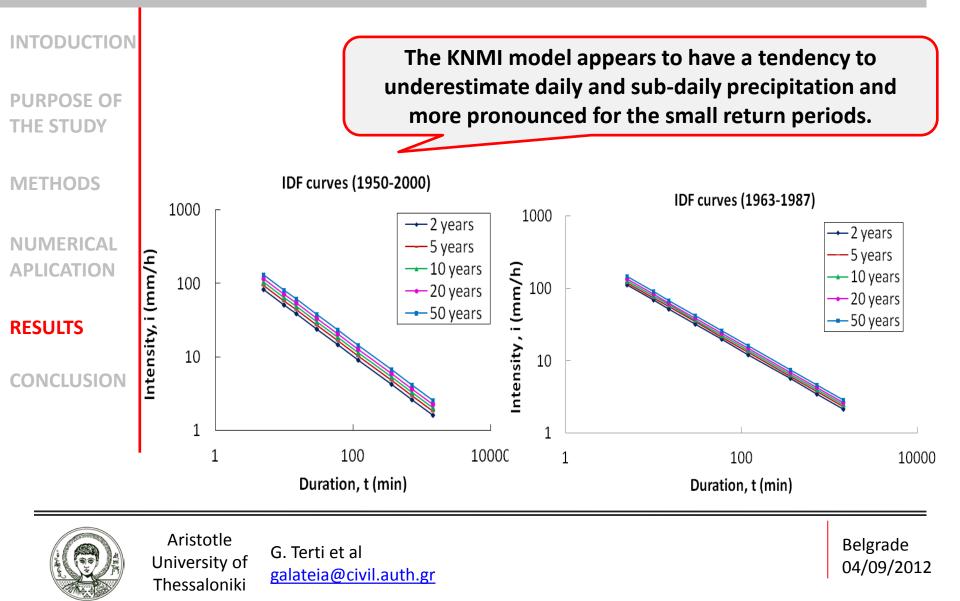
PURPOSE OF THE STUDY

METHODS

NUMERICAL APLICATION

RESULTS

CONCLUSION


	t	0.083333	0.16666	0.25	0.5	1	2	6	12	24
Ľ	т									
	2	6.8931	8.5084	9.6236	11.8789	14.66259	18.09867	25.26791	31.18929	38.49829
	5	7.8812	9.7280	11.0032	13.5817	16.76445	20.6931	28.89004	35.66024	44.01699
	10	8.7218	10.7655	12.1767	15.0302	18.5524	22.90003	31.97119	39.46343	48.71143
	20	9.6520	11.9137	13.4753	16.6332	20.53102	25.34234	35.38094	43.67224	53.90654
	50	11.0356	13.6215	15.4070	19.0175	23.47413	28.97514	40.45276	49.93261	61.63399
	100	12.2125	15.0743	17.0501	21.0457	25.97766	32.06536	44.76708	55.25796	68.20731
	200	13.5150	16.6819	18.8685	23.2903	28.7482	35.48515	49.54153	61.15126	75.48167
	500	15.4523	19.0733	21.5733	26.6289	32.86922	40.57191	56.64325	69.91724	86.30189
	1000	17.1003	21.1075	23.8741	29.4689	36.37475	44.89894	62.6843	77.37396	95.50605
	t	0.083333	0.16666	0.25	0.5	1	2	6	12	24
	t T	0.083333	0.16666	0.25	0.5	1	2	6	12	24
		0.083333 7.2942	0.16666 9.0026	0.25 10.1822	0.5 12.5672	1 15.51091	2 19.14414	6 26.72388	12 32.98361	24 40.70961
	т									
	T 2	7.2942	9.0026	10.1822	12.5672	15.51091	19.14414	26.72388	32.98361	40.70961
	T 2 5	7.2942 8.9290	9.0026 11.0203	10.1822 12.4642	12.5672 15.3838	15.51091 18.98727	19.14414 23.4348	26.72388 32.71334	32.98361 40.37603	40.70961 49.83361
	T 2 5 10	7.2942 8.9290 10.4049	9.0026 11.0203 12.8420	10.1822 12.4642 14.5245	12.5672 15.3838 17.9267	15.51091 18.98727 22.12585	19.14414 23.4348 27.30855	26.72388 32.71334 38.12082	32.98361 40.37603 47.05014	40.70961 49.83361 58.07105
	T 2 5 10 20	7.2942 8.9290 10.4049 12.1248	9.0026 11.0203 12.8420 14.9648	10.1822 12.4642 14.5245 16.9254	12.5672 15.3838 17.9267 20.8900	15.51091 18.98727 22.12585 25.78322	19.14414 23.4348 27.30855 31.82262	26.72388 32.71334 38.12082 44.42214	32.98361 40.37603 47.05014 54.82748	40.70961 49.83361 58.07105 67.67012
	T 2 5 10 20 50	7.2942 8.9290 10.4049 12.1248 14.8423	9.0026 11.0203 12.8420 14.9648 18.3187	10.1822 12.4642 14.5245 16.9254 20.7188	12.5672 15.3838 17.9267 20.8900 25.5720	15.51091 18.98727 22.12585 25.78322 31.56186	19.14414 23.4348 27.30855 31.82262 38.95483	26.72388 32.71334 38.12082 44.42214 54.37821	32.98361 40.37603 47.05014 54.82748 67.11562	40.70961 49.83361 58.07105 67.67012 82.83661
	T 2 5 10 20 50 100	7.2942 8.9290 10.4049 12.1248 14.8423 17.2957	9.0026 11.0203 12.8420 14.9648 18.3187 21.3468	10.1822 12.4642 14.5245 16.9254 20.7188 24.1436	12.5672 15.3838 17.9267 20.8900 25.5720 29.7990	15.51091 18.98727 22.12585 25.78322 31.56186 36.779	19.14414 23.4348 27.30855 31.82262 38.95483 45.39402	26.72388 32.71334 38.12082 44.42214 54.37821 63.36686	32.98361 40.37603 47.05014 54.82748 67.11562 78.20976	40.70961 49.83361 58.07105 67.67012 82.83661 96.52941

Aristotle G. Terti et al University of Thessaloniki

galateia@civil.auth.gr

IDF curves derived from the downscaled daily rainfall series provided by KNMI-RACMO2 for current (1950-2000) IDF relations for the 1963-1987 period for Macedonia Airport station

INTODUCTION

PURPOSE OF THE STUDY

METHODOLOGY

NUMERICAL APLICATION

RESULTS

CONCLUSION

IDF and DDF relationships indicate a clear increasing trend on rainfall intensities and rainfall depths for Thessaloniki.

✓ Increase on rainfall intensities and depths is up to 35% for 5 minute rainfall duration and 50 years return period!

Challenge

Improving the accuracy of rainfall input data hydrological models' **uncertainty is reduced** and more efficient and **sustainable drainage systems** can be designed!

Aristotle University of Thessaloniki

G. Terti et al galateia@civil.auth.gr

INTODUCTION

PURPOSE OF THE STUDY

METHODOLOGY

NUMERICAL APLICATION

RESULTS

CONCLUSION

Although RCMs simulations provide finer spatial resolutions in comparison with GCMs, the direct comparison of IDF curves based on observed data with those based on RCM simulations for current climate (1963-1987) is not appropriate since the RCM data represent average values over an area of 25x25 km while the observations are local (at-site) measurements.

Future

study

Mismatch of spatial scale reduction!

A spatial downscaling method should be applied in order to link better climate variables provided by the RCM data with the local station data in Thessaloniki.

Aristotle University of Thessaloniki

G. Terti et al galateia@civil.auth.gr

References

Beuchat, X., B. Schaefli, M. Soutter, and A. Mermoud (2011). Toward a robust method for subdaily rainfall downscaling from daily data, *Water Resources Research*, 47, W09524, doi:10.1029/2010WR010342.

◆Burlando, P. and Rosso, R. (1996). Scaling and multiscaling models of depth-duration-frequency curves for storm precipitation. *J. Hydrology*, 187, pp. 45–64.

Desramaut N. (2008). Estination of Intensity Duration Frequency Curves for Current and Future Climates. Master thesis, McGill University, Montreal, Quebec, Canada, p.1-70.

♦Grum M., A. T Jørgensen, R.M. Johansen and J. J. Linde (2006). The effect of climate change on urban drainage: An evaluation based on regional climate model simulations. Water Science and Technology, 54(6–7), pp. 9–15.

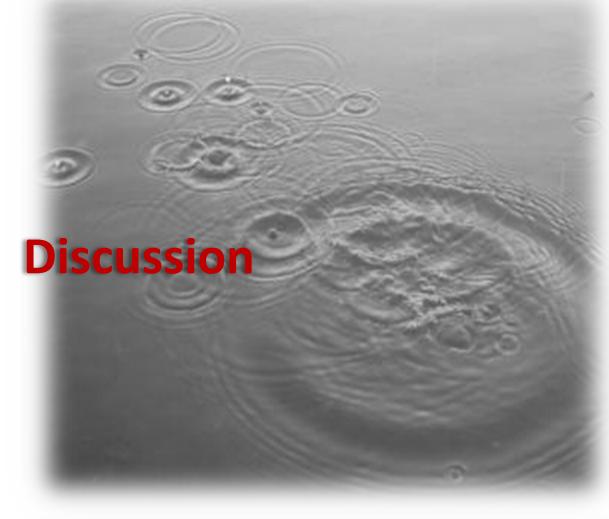
Mailhot A., S. Duchesne, D. Caya, G. Talbot (2007). Assessment of future change in intensity-duration-frequency (IDF) curves for Southern Quebec using the Canadian Regional Climate Model (CGCM). *Journal of Hydrology*, 347(1-2), pp. 197-210.

✤Nguyen V-T-V., Nguyen, T-D., and Ashkar, F. (2002). Regional Frequency Analysis of Extreme Rainfalls, Water Science and Technology, 45(2), 75-81.

✤Nguyen V.-T.-V., Desramaut N. and Nguyen T-D. (2008). Estimation of Design Storms in Consideration of Climate Variability and Change. 11th International Conference on Urban Drainage, Edinburgh, Scotland, UK, p. 1-10.

✤Nguyen V.-T.-V., Desramaut N. and Nguyen T-D., (2010). Optimal rainfall temporal patterns for urban drainage design in the context of climate change. *Water Science and Technology*, 62(5), pp. 1170-1176.

♦Olofsson M. (2007). Climate Change and Urban Drainage. Future precipitation and hydraulic impact. Licentiate thesis, Department of Civil, Mining and Environmental Engineering, Luleå University of Technology, Sweden, p. 1-23.


Prodanovic P., Simonovic S. (2007). Development of rainfall intensity duration frequency curves for the City of London under the changing climate. Dept. of Civil and Environmental Engineering, University of Western Ontario, Ontario, Canada, p.5-46.

Sunyer M.A., Madsen H., Ang P.H. (2001). A comparison of different regional climate models and statistical downscaling methods for extreme rainfall estimation under climate change. *Atmospheric Research*, 103, 119-128.

♦ Wilby, R.L., Dawson, C.W., Barrow, E.M., 2002. SDSM - a decision support tool for the assessment of regional climate change impacts. *Environmental Modelling and Software* 17, 147–159.

✤Willems P., Arnbjerg-Nielsen K., Olsson J., Nguyen V.T.V. (2012). Climate change impact assessment on urban rainfall extremes and urban drainage: Methods and shortcomings. *Atmospheric Research*, 103, 106-118.

Thank you for your attention!

Aristotle University of Thessaloniki

G. Terti et al galateia@civil.auth.gr