Probabilistic Forecasting For Urban Water Management

An Urban Case Study: Aarhus, Denmark

Presenter: Jeanne-Rose Renee
Co-authors: Ole Mark and Henrik Madsen

The 9th International Joint IWA/IAHR Conference on URBAN DRAINAGE MODELLING
3-7 September, 2012
Belgrade, Serbia

University of Belgrade, Faculty of Civil Engineering
\[P(S \leq x | \hat{S} = 0) = P(S \leq x | S > 0, \hat{S} = 0)P(S > 0 | \hat{S} = 0) + P(S = 0 | \hat{S} = 0) \]
\[\hat{P}(S = 0 | \hat{S} = x^*) = a \exp(bx^*) + c \]

\[P(S \leq x | \hat{S} = x^*) = P(S \leq x | S > 0, \hat{S} = x^*)P(S > 0 | \hat{S} = x^*) + P(S = 0 | \hat{S} = x^*) \]
\[P(S < x, \hat{S} \leq x^* | S > 0, \hat{S} > 0) \]
\[P(S \leq x | S > 0, \hat{S} = x^*) \]
\[P(S = 0 | \hat{S} = x^*) \]

\[P(S \leq x | \hat{S} = 0) = P(S \leq x | S > 0, \hat{S} = 0)P(S > 0 | \hat{S} = 0) + P(S = 0 | \hat{S} = 0) \]
\[\hat{P}(S = 0 | \hat{S} = x^*) = a \exp(bx^*) + c \]

\[P(S \leq x | \hat{S} = x^*) = P(S \leq x | S > 0, \hat{S} = x^*)P(S > 0 | \hat{S} = x^*) + P(S = 0 | \hat{S} = x^*) \]
\[P(S < x, \hat{S} \leq x^* | S > 0, \hat{S} > 0) \]
\[P(S \leq x | S > 0, \hat{S} = x^*) \]
\[P(S = 0 | \hat{S} = x^*) \]
What we’ll cover?

- 50th percentile
- 95th percentile
Background

Is Heavy Flooding In St. Lucia A Glimpse Into The Future Of The Caribbean?
What have we done?

- Developed a method for estimating the uncertainty in the rainfall forecast
- Compared rainfall forecast from NWP model with observed rainfall from rain gauges
- Compared two approaches for quantifying the uncertainty in the rainfall forecast
- Use the probabilistic information as input to a hydrological hydraulic model
What assumptions have we made?

- Observed rainfall is the ‘real’ rainfall
- Sewer model is fit for the purpose
- Complete temporal dependence between lead – times
 - Hence comparison of LHS results to the quantile approach
Case Study - Aarhus, Denmark

- Population: 250,000
- High quality data for the sewer system
- Archived rainfall forecasts
- Long records of observed data
- Good rain gauge coverage
Model Case Study

- 1926 manholes
- 1657 pipes
- 196 weirs
- 83 basins
- 26 pumps

Complex network
Rain gauge network

- 3 rain gauges
- Volumetric resolution = 0.2mm
- Temporal resolution = 1 minute
- Duration = 10 years of data

NWP model data

- Grid resolution = (6.2x11.1) km
- Study area = 138 km²
- Temporal resolution = 1 hr
- Duration = 2 years of data

Legend

- rain_gauges
- Model area
- Forecast coverage
- Thiessen polygon
Motivation - Fact

Discrepancy between the forecasted and observed rainfall
Forecast = 0 ("no rain")

- Probability of observing "rain"
 - Lognormal distribution
- Probability of observing "no rain"
 - Estimate probability from data
Forecast \(> 0\) ("rain")

- Probability of observing "rain"
- Probability of observing "no rain"
- Bivariate distribution
- Functional relationship to estimate the probability

Transformed observations

\[\rho = 0.4908 \]

Areal forecasted rainfall (mm)
Areal observed rainfall (mm)

Forecasted rainfall >0, Observed rainfall >0

Probability

Best
LHS and Direct Quantile Approach

Rainfall Forecast

Forecast Ensemble

50th percentile
95th percentile
Comparison of max. WL over 2D grid

50th percentile of max WL (m)

95th percentile of max WL (m)
Results from hydrodynamic model

- Ensemble of water depths (LHS approach)
- 50th percentile quantile approach
- 95th percentile quantile approach

Comparing the LHS approach with the quantile approach, the LHS approach shows a wider range of water depths, indicating higher variability in the model predictions.
LHS approach

Direct quantile approach

50th percentile

95th percentile
Final thoughts

- Making decisions under uncertainty is one of the most difficult management decisions but is the most important one!!!

- Addressing uncertainty as a reality shifts the question:
 1. Should a flood warning be issued?
 2. With what confidence it might succeed?
Questions?

Jeanne-Rose Renee
jcr206@exeter.ac.uk
jerr@dhigroup.com