Probabilistic Forecasting For Urban Water Management

An Urban Case Study: Aarhus, Denmark

Presenter: Jeanne-Rose Renee

Co-authors: Ole Mark and Henrik Madsen

The 9th International Joint IWA/IAHR Conference on URBAN DRAINAGE MODELLING

3-7 September, 2012

Belgrade, Serbia University of Belgrade, Faculty of Civil Engineering

$$\begin{split} P(S \leq x | \hat{S} = 0) &= P(S \leq x | S > 0, \hat{S} = 0) P(S > 0 | \hat{S} = 0) + P(S = 0 | \hat{S} = 0) \\ \hat{P}(S = 0 | \hat{S} = x^*) &= a \exp(bx^*) + c \end{split}$$

$$\begin{aligned} P(S \leq x | \hat{S} = x^*) &= P(S \leq x | S > 0, \hat{S} = x^*) P(S > 0 | \hat{S} = x^*) + P(S = 0 | \hat{S} = x^*) \\ P(S < x, \hat{S} \leq x^* | S > 0, \hat{S} > 0) \\ P(S \leq x | \hat{S} > 0, \hat{S} = x^*) \\ P(S = 0 | \hat{S} = x^*) \\ P(S = 0 | \hat{S} = x^*) \end{aligned}$$

$$\begin{aligned} P(S \leq x | \hat{S} = 0) &= P(S \leq x | S > 0, \hat{S} = 0) P(S > 0 | \hat{S} = 0) + P(S = 0 | \hat{S} = 0) \\ \hat{P}(S = 0 | \hat{S} = x^*) &= a \exp(bx^*) + c \end{aligned}$$

$$\begin{aligned} P(S \leq x | \hat{S} = x^*) &= P(S \leq x | S > 0, \hat{S} = x^*) P(S > 0 | \hat{S} = x^*) + P(S = 0 | \hat{S} = x^*) \\ P(S \leq x | \hat{S} = x^*) &= P(S \leq x | S > 0, \hat{S} = x^*) P(S > 0 | \hat{S} = x^*) + P(S = 0 | \hat{S} = x^*) \\ P(S \leq x | \hat{S} = 0) &= P(S \leq x | S > 0, \hat{S} = 0) P(S > 0 | \hat{S} = 0) + F' (x^* - x^*) P(S = 0 | \hat{S} = x^*) \\ P(S \leq x | \hat{S} = x^*) &= P(S \leq x | S > 0, \hat{S} = x^*) P(S > 0 | \hat{S} = x^*) + P(S = 0 | \hat{S} = x^*) \\ P(S \leq x | \hat{S} = x^*) &= P(S \leq x | S > 0, \hat{S} = x^*) P(S > 0 | \hat{S} = x^*) + P(S = 0 | \hat{S} = x^*) \\ P(S \leq x | \hat{S} = x^*) &= P(S \leq x | S > 0, \hat{S} = x^*) P(S > 0 | \hat{S} = x^*) + P(S = 0 | \hat{S} = x^*) P(S = 0$$

What we'll cover?

50th percentile

AN

95th percentile

Background

OCTOBER 20, 2010

Is Heavy Flooding In St. Lucia A Glimpse Into The Future Of The Caribbean?

What have we done?

- Developed a method for estimating the uncertainty in the rainfall forecast
 - Compared rainfall forecast from NWP model with observed rainfall from rain gauges
 - Compared two approaches for quantifying the uncertainty in the rainfall forecast
 - Use the probabilistic information as input to a hydrological hydraulic model

What assumptions have we made?

Observed rainfall is the 'real' rainfall

- Sewer model is fit for the purpose
- Complete temporal dependence between lead times
 - Hence comparison of LHS results to the quantile approach

Case Study-Aarhus Denmark

Population – 250,000 High quality data for the sewer system Archived rainfall forecasts Long records of observed data Good rain gauge coverage

Motivation - Fact

Discrepancy between the forecasted and observed rainfall

LHS and Direct Quantile Approach

Comparison of max. WL over 2D grid

Results from hydrodynamic model

LHS approach

Direct quantile approach

Final thoughts

- Making decisions under uncertainty is one of the most difficult management decisions but is the most important one!!!
- Addressing uncertainty as a reality shifts the question:
 - I. Should a flood warning be issued?
 - 2. With what confidence it might succeed?

Jeanne-Rose Renee

jcr206@exeter.ac.uk

jerr@dhigroup.com

D

