Field study and model simulations of sulfur and nitrogen transformations in a rising main receiving nitrate dosing

Evi Vinck, Brecht M.R. Donckels, Joris Spiessens, Eveline I.P. Volcke, Marjoleine Weemaes, Greet De Gueldre, Boudewijn Van De Steene
Aquafin

• Collection and treatment of municipal waste water in Flanders, Belgium
• 247 wastewater treatment plants, 1174 pumping stations and 4735 km of (mainly concrete) collector sewers
Hydrogen sulfide / \(\text{H}_2\text{S} \) in sewers

Sulfide is formed under anaerobic conditions, \(\text{e.g.} \) in pressure mains

\[
\text{SO}_4^{2-} \rightarrow \text{H}_2\text{S}
\]

\(\bullet \) HRT
\(\bullet \) \(\phi \) + A/V-ratio
\(\bullet \) T
\(\bullet \) BOD
\(\bullet \) \(\text{SO}_4^{2-} \)
\(\bullet \) …

Diagram:
- mg/L
- \(\text{O}_2 \)
- \(\text{Sulfide build-up} \)
Hydrogen sulfide / H_2S in sewers

Consequences of H_2S formation

- Odor complaints
- Concrete corrosion
- Health hazards

Diagram showing the gravity sewer, pumping station, pressure main, manhole, and gravity sewer connected with arrows indicating the flow of the concept.
How to deal with H_2S?

Dosing of chemicals in pumping station

Dosing of chemicals in pumping station

$\text{Ca(NO}_3\text{)}_2$ $\text{SO}_4^{2-} \rightarrow \text{H}_2\text{S}$

mg/L

gravity sewer pumping station pressure main manhole gravity sewer
Site description

Nitrate dosing tank:

- Required dose: 140 ton/year
- Cost price: 40,000€/year
- Dynamic model to describe nitrogen transformations

Odor complaints

- H₂S

Diagram details:

- 7055 PE
- Ø355 mm
- 4096 m
- 700m
- Pressure main in high pressure PE
- Gravity sewer in vitrified clay
- Pumping station
Aquafin’s model library for Simulating Sulfides in Sewers (Donckels, 2012)

Model approach

Aerobic + anaerobic carbon and sulfur transformations: existing WATS model

Nitrate dosing

- A shift in active bacterial population
- Stimulation of sulfide-oxidizing nitrate-reducing bacteria

Mohanakrishnan et al. (2009), Water Research 43: 4225-4237
Model approach

Aqua3S: Aquafin’s model library for Simulating Sulfides in Sewers (Donckels, 2012)

Anoxic transformations

- Two step denitrification processes: formation of intermediate nitrite
- Sulfide oxidation not included
Calibration and validation

1/hour

- Nitrate
- Nitrite
- COD
- BOD
- VFA
- sulfate

Grab samples:
- Nitrate
- Nitrite

Pressure main in high pressure PE

Gravity sewer in vitrified clay
Field campaign 1&2

CAMPAIGN 1

S_{NO3} (mg N/L)

Time (d)

CAMPAIGN 2

S_{NO3} (mg N/L)

Time (d)

S_{NO2} (mg N/L)

Time (d)
• Denitrification rates are underestimated: additional anoxic processes:
 • Oxidation of sulfides by nitrate
Conclusions

• Model concept based on two-step denitrification not sufficient to describe field data
• Include sulfide oxidation in model concept

Thank you for your attention!