Ventilation in Sewers Quantified from Measurements of CO₂

Presenter: Emil D. Fuglsang Co-authors: Asbjørn H. Nielsen, Jes Vollertsen Department of Civil Engineering Aalborg University, Denmark

WHAT IS A SEWER?

- Conveyer of water
- Conveyer of gas
- Biological and chemical reactor

WHY STUDY VENTILATION?

- Odor problems
- As long as the smelly sewer gas stays in the sewer why care?
- Asset corrosion
- Corrosive hydrogen sulfide attacks concrete and metals
- Safety issues

RG UNIVER

- Hydrogen sulfide is highly toxic

WHAT DO WE KNOW ABOUT SEWER VENTILATION?

- Sewer gas is transported by means of:
- Drag effects
- Wind at surface
- Barometric pressure gradients
- Temperature gradients
- Changes in water level pumps starting and stopping

HOW IS VENTILATION MEASURED?

- Measuring methods typically used:
- Anemometers
- Tracer gas experiments
- Pressure transducers
- Physical models
- Ventilation is a dynamic phenomenon changing in time and space
- Tracer measurements and velocities are labour intensive and do seldom give us the full dynamics of the process

Madsen H I, Hvitved-Jacobsen T, Vollertsen J (2006). Gas Phase Transport in Gravity Sewers – A methodology for determination of horizontal gas transport and ventilation. Water Environment Research, 78(11), 2203-2209

OBJECTIVES

We test if CO₂ can be used as a naturally occuring tracer – overcomming those issues

CONCEPTUAL IDEA

- High CO2 concentrations in water
 - Caused by biodegradation and potable water CO2 contents
 - Easily measurable
- Low CO2 concentrations in atmosphere
 - Constant

- CO2 is released at a known rate from water to gas
 - Release rates depend on hydraulic conditions in the pipe

CONCEPTUAL IDEA

- In a completely closed system the partial pressure of CO2 is the same in the water as in the gas
- In a completely ventilated system, the partial pressure of CO2 in the sewer gas is the same as in the atmosphere

In a partly open system, the CO2 concentration in the gas tells us how fast the sewer gas is ventilated out

PROJECT SITE

We have tested this at an intercepting sewer in Denmark

AALBORG UNIVER

MEASUREMENT CAMPAIGN

Installation of equipment in the sewer

RESULTS

Data from January 2012

AALBORG UNIVERSITY

CONCEPTUAL IDEA

WHAT WILL THE RETENTION TIME BE?

LIMITATIONS OF THE METHOD

- To release CO_2 from the water to the air, pH must be below ~8
- A sufficient amount of alkalinity must be present in the wastewater

CONCLUSIONS

- A new approach to the sewer air ventilation has been suggested
- In this case study sewer-air retention times around 1.5-2.5 hours were found
- The method should be addaptable to other systems as long as the pH is not too high and when a certain amount of alkalinity is present

Questions?

